Acknowledgements

The Prince Edward Island Department of Education and Lifelong Learning (DELL) gratefully acknowledges the contributions of the following committee in the development of the Prince Edward Island Biology 521A and Biology 621A Curriculum Guides.

Biology Curriculum Development Committee

Charlie Trainor - Montague Regional High School
Chris Higginbotham - Three Oaks Senior High
Dylan Voth - Kinkora Regional High School
Erin Costello - Colonel Gray High School
Jason Campbell - Bluefield High School
Karen Power - Souris Regional School
Kevin Bustard - Charlottetown Rural High School
Lisa Paugh - Westisle Composite High
Louis Andrew - Kensington Intermediate Senior High
Tracy McGee - Morell Regional High School
Jonathan Hayes - Secondary Science Innovation Leader, DELL

The Prince Edward Island Department of Education and Lifelong Learning (DELL) would also like to gratefully acknowledge the contributions of the following individuals.

Dr. Michael Gibson (Holland College - Bioscience Technology Learning Manager) for sharing his advice and expertise.
Kim McBurney (former Secondary Science Innovation Leader, DELL) for her efforts in the development of the science outcomes framework and associated content.
Table of Contents

Acknowledgements ... i
Table of Contents ... ii
List of Tables and Figures ... iv

Overview of Grade 11 Biology 521A .. v
 Course Description ...
v
Introduction ... 2
 Vision .. 2
 Aim ... 3

Curriculum Design .. 4
 Essential Graduation Competencies (EGC’s) 4
 Essential Graduation Competencies—Definitions 5
 Foundations of Scientific Literacy ... 8
 General Curriculum Outcomes ... 8
 Specific Curriculum Outcomes .. 9
 Achievement Indicators (AIs) .. 9
 Elaborations .. 9
 Bloom’s Taxonomy .. 10
 Cognitive Process Dimension ... 10
 Knowledge Dimension .. 11
 Taxonomy Tables .. 11
 SCO Structure ... 12
 Curriculum Guide Layout ... 12

Pathway to Scientific Literacy .. 14

Foundations of Scientific Literacy ... 16
 Overview ... 16
 Nature of Science .. 17
 Procedural Knowledge .. 20
 Content Knowledge ... 26
 Decisions and Perspectives ... 29
 STEAM Problem-Solving Processes 30
 Interdisciplinary Skills .. 32
 Instructional Strategies .. 34
 Assessment and Evaluation .. 36
Table of Contents

Biology 521A Course Overview ... 39
 - Outcome Summary ... 39
 - Taxonomy Table .. 40
 - Table of Specifications (TOS) .. 41
 - NoS 1 .. 42
 - DP 1 .. 44
 - PK 1 .. 46
 - PK 2 .. 48
 - PK 3 .. 50
 - PK 4 .. 52
 - PK 5 .. 54
 - PK 6 .. 56
 - CK 1.1 .. 58
 - CK 1.2 .. 60
 - CK 1.3 .. 62
 - CK 2.1 .. 64
 - CK 2.2 .. 66
 - CK 2.3 .. 68
 - CK 2.4 .. 70
 - CK 2.5 .. 72
 - CK 2.6 .. 74
 - CK 2.7 .. 76
 - CK 2.8 .. 78
 - CK 3 .. 80

Appendix A: The Scientific Continuum .. 82

Appendix B: Literacy Strategies that Support Science Learning 85

References .. 86
List of Tables and Figures

List of Tables

Table 1. Bloom’s Taxonomy—Cognitive Process Dimension .. 10
Table 2. Bloom’s Taxonomy—Knowledge Dimension ... 11
Table 3. Details of Curriculum Guide Layout ... 12
Table 4. Stages of the Scientific Inquiry Process and Selected Skills 23
Table 5. STEAM Problem-solving .. 30
Table 6. Science Assessment Strategies ... 37
Table 7. Summary of Curriculum Outcomes .. 39
Table 8. Bloom's Taxonomy Table for BIO521A .. 40
Table 9. Verb Chart for BIO521A ... 40
Table 10. Table of Specification for BIO521A .. 41
Table 11. Types of Error .. 51
Table 12. Claim, Reasoning, and Evidence Writing Frame Sample 53

List of Figures

Figure 1. Essential Graduation Competencies ... 4
Figure 2. Nature of Science ... 8
Figure 3. Sample of a Curriculum Guide Page ... 13
Figure 4. Pathways to Scientific Literacy ... 14
Figure 5. How Science Works (University of California Museum of Paleontology 2016) 16
Figure 6. Scientific Reasoning ... 18
Figure 7. Classification of Scientific Studies. Adapted from Oleckno, 2002 21
Figure 8. Scientific Inquiry Process Wheel .. 22
Figure 9. Quantum Mechanical Model of the Atom ... 24
Figure 10. Energy Flow in a Food Web (Perry 2019) .. 24
Figure 11. Stock and Flow Conceptual Model ... 25
Figure 13. Comparison of STEAM Problem-solving Processes 31
Figure 12. Generic Problem-solving Process .. 31
Figure 14. The Nature of Language Arts .. 33
Figure 15. Gradual Release of Responsibility .. 34
Figure 16. Science Teaching Strategies ... 35
Overview of Grade 11 Biology 521A

Course Description

Biology 521A provides an opportunity for students to develop scientific literacy through a holistic examination of how human systems work independently and interdependently to maintain homeostasis – an optimum equilibrium state of function. These topics, along with procedural knowledge, provide the content and skill framework that will be used to engage students with the processes of scientific literacy (inquiry, problem solving, decision making) and continued development of the essential graduation competencies.

Forward

The pan-Canadian Common Framework of Science Learning Outcomes K to 12 (1997) assisted in standardizing science education across Canada. This framework was used to develop the Foundation for the Atlantic Canada Science Curriculum (1998). Sections of the Atlantic Canada Science Foundation Document have been incorporated into this revision and augmented with ideas and standards presented in newer Canadian provincial science curricula and recent literature concerning science education. This includes the National Research Council's Framework for K–12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas (2012), and the resulting Next Generation Science Standards: For States, By States (2013).

The revised science curriculum is designed to enable students to work towards the achievement of six, cross-curricular essential graduation competencies (EGCs) as defined by the Council of Atlantic Ministers of Education and Training (CAMET) in The Atlantic Canada Framework for Essential Graduation Competencies (2015). To facilitate this shift to competency-based education, a number of significant changes have been incorporated in this guide: 1) specific curriculum outcomes (SCOs) have been reduced and targeted toward EGCs; 2) greater emphasis has been placed on processes and skills; and 3) achievement indicators (AIs) have been included to clarify the “depth and breadth” of SCOs.
Introduction

Vision

The Prince Edward Island science curriculum is guided by the vision that all students will have the opportunity to develop scientific literacy. Scientific literacy is the set of knowledge, skills, and attitudes that enables an individual to inquire, problem solve, critically evaluate and make well-informed decisions, and maintain a sense of wonder about the world around them.

Scientific Literacy

As we progress through the 21st century, humans have created a world that confronts us daily with issues of a scientific and technological nature: global warming, decreasing sources of clean water, cloning, multi-drug-resistant bacteria, evolving viruses, nanotechnology, genetically modified organisms (GMOs), waste disposal, new sources of energy, dependency on electronic devices, suburbanization, and new frontiers in space exploration. In order to play an active role in this world of change, individuals must have a degree of scientific literacy that enables them to sort through valid and invalid claims and understand the implications of new developments.

Scientifically literate people have a fundamental knowledge about the natural world around them and an understanding of the scientific processes that were used to obtain such knowledge. They are aware that knowing something scientifically requires evidence that passes through a rigorous process of review, evaluation, and support by a global community of experts, and that this process extends over time. They recognize our understanding of the natural world is not static but constantly evolving; what we “know” today may change as new concepts and technologies are developed. Whether or not they work in a science-related field, scientifically literate people are able to make informed personal, political, economic, and ethical decisions regarding science and technology matters by evaluating evidence, and are able to defend their decisions using rational reasoning.
Aim

The Prince Edward Island science curriculum aims to facilitate the development of scientifically literate students by providing opportunities to develop and apply an understanding of the nature of science to evaluate claims related to science; develop skills and strategies required to perform scientific inquiry and apply science to solve problems; work collaboratively to generate and explore ideas, and carry out investigations; reason scientifically; develop foundational understanding of scientific concepts that explain the natural and material world; communicate scientific information effectively; evaluate the personal, societal, environmental, and ethical implications of the applications of science and technology from a variety of perspectives.

Attitudes

Positive attitudes towards science will also be fostered in our learners. Attitudes are generalized aspects of behaviour that can be modelled by adults and encouraged by selective approval. Positive attitudes include, but are not limited to

- exhibiting a sense of wonder and curiosity about scientific and technological endeavours;
- engaging and persevering in science tasks and projects;
- demonstrating resilience;
- showing concern for safety during inquiry activities;
- exhibiting collaborative behaviours;
- valuing the role of science and technology in our understanding of the world;
- demonstrating an appreciation of the nature of science;
- demonstrating respect and sensitivity in maintaining a balance between the needs of humans and the environment; and
- being open-minded and projecting beyond the personal consequences of proposed actions.
Curriculum Design

Essential Graduation Competencies (EGC’s)

Curriculum is designed to articulate what students are expected to know and be able to do by the time they graduate from high school. The PEI Department of Education and Lifelong Learning designs curriculum that is based on the Atlantic Canada Framework for Essential Graduation Competencies released by the Council of Atlantic Ministers of Education and Training (CAMET 2015).

Competencies articulate the interrelated sets of attitudes, skills, and knowledge—beyond foundational literacy and numeracy—that prepare learners to successfully participate in lifelong learning and life/work transitions. They are cross-curricular in nature and provide opportunities for interdisciplinary learning. Six competencies have been identified: citizenship, communication, personal-career development, creativity and innovation, critical thinking, and technological fluency (Figure 1). Achievement of the essential graduation competencies (EGCs) will be addressed through the assessment and evaluation of curriculum outcomes developed for individual courses and programs.

Figure 1. Essential Graduation Competencies
Essential Graduation Competencies—Definitions

Critical Thinking

Learners are expected to analyse and evaluate evidence, arguments, and ideas using various types of reasoning and systems thinking to inquire, make decisions, and solve problems. They reflect critically on thinking processes.

Learners are expected to

• use critical thinking skills to inquire, make decisions, and solve problems;
• recognize that critical thinking is purposeful;
• demonstrate curiosity, inquisitiveness, creativity, flexibility, persistence, open- and fair-mindedness, tolerance for ambiguity, and suspension of judgment;
• ask powerful questions which support inquiry, decision-making, and problem solving;
• acquire, interpret, and synthesize relevant and reliable information from a variety of sources;
• analyse and evaluate evidence, arguments, and ideas;
• use various types of evidence, reasoning, and strategies to draw conclusions, make decisions, and solve problems;
• reflect critically on thinking processes used and acknowledge assumptions;
• effectively communicate ideas, conclusions, decisions, and solutions; and
• value the ideas and contributions of others who hold diverse points of view.

Technological Fluency

Learners are expected to use and apply technology to collaborate, communicate, create, innovate, learn, and solve problems. They use technology in a legal, safe, and ethically responsible manner.

Learners are expected to

• recognize that technology encompasses a range of learning tools and contexts;
• use and interact with technology to create new knowledge;
• apply digital technology to gather, filter, organize, evaluate, use, adapt, create, and share information;
• select and use technology to impact and advance one another; and
• adopt, adapt, and apply technology efficiently, effectively, and productively.
Citizenship

Learners are expected to contribute to the quality and sustainability of their environment, communities, and society. They analyse cultural, economic, environmental, and social issues; make decisions and judgments; and solve problems and act as stewards in a local, national, and global context.

Learners are expected to

- recognize the principles and actions of citizens in just, pluralistic, and democratic societies;
- demonstrate the disposition and skills necessary for effective citizenship;
- consider possible consequences of decisions, judgment, and solutions to problems;
- participate in civic activities that support and promote social and cultural diversity and cohesion;
- promote and protect human rights and equity;
- appreciate the complexity and interconnectedness of factors in analysing issues; and
- demonstrate understanding of sustainable development.

Communication

Learners are expected to express themselves and interpret effectively through a variety of media. They participate in critical dialogue, listen, read, view, and create for information, enrichment, and enjoyment.

Learners are expected to

- listen and interact purposefully and respectfully in formal and informal contexts;
- engage in constructive and critical dialogue;
- understand, interpret, and respond to thoughts, ideas, and emotions presented through multiple media forms;
- express ideas, information, learnings, perceptions, and feelings through multiple media forms, considering purpose and audience;
- assess the effectiveness of communication and critically reflect on intended purpose, audience, and choice of media; and
- analyse the impact of information and communication technology.
Personal-Career Development

Learners are expected to become self-aware and self-directed individuals who set and pursue goals. They understand and appreciate how culture contributes to work and personal life roles. They make thoughtful decisions regarding health and wellness, and career pathways.

Learners are expected to

- connect learning to personal and career development;
- demonstrate behaviours that contribute to the well-being of self and others;
- build healthy personal and work relationships;
- establish skills and habits to pursue physical, spiritual, mental, and emotional well-being;
- develop strategies to manage career balance and wellness;
- create and implement a personal, education, career, and financial plan to support transitions and achievement of personal, education, and career goals; and
- demonstrate preparedness to learn and work individually, cooperatively, and collaboratively in diverse, evolving environments.

Creativity and Innovation

Learners are expected to demonstrate openness to new experiences; to engage in creative processes; to make unexpected connections; and to generate new and dynamic ideas, techniques, and products. They value aesthetic expression and appreciate the creative and innovative work of others.

Learners are expected to

- gather information through all senses to imagine, create, and innovate;
- develop and apply creative abilities to communicate ideas, perceptions, and feelings;
- take responsible risk, accept critical feedback, reflect, and learn from trial and error;
- think divergently, and embrace complexity and ambiguity;
- recognize that creative processes are vital to innovation;
- use creation techniques to generate innovations;
- collaborate to create and innovate;
- critically reflect on creative and innovative works and processes; and
- value the contribution of creativity and innovation.
Foundations of Scientific Literacy

PEI science curriculum is based upon four foundations deemed essential to scientific literacy. Three of these components—Procedural Knowledge, Content Knowledge, and Decisions and Perspectives—reflect 1) the processes and skills required in the development and application of scientific knowledge, 2) the resulting body of knowledge, and 3) the need for critical thinking about the application of science developments from a variety of perspectives and with consideration of ethics. Central to these three foundations is the Nature of Science, which addresses epistemic knowledge or the principles underlying science as a way of knowing. More detail relating to these concepts can be found in the section “Foundations of Scientific Literacy” p.16. The foundations of science literacy support and are integrated with the six essential graduation competencies.

General Curriculum Outcomes

General curriculum outcomes statements articulate what students are expected to know and be able to do upon completion of study in Science education.

Nature of Science (NoS)

Students will comprehend science as a way of knowing about the natural world that uses valid, empirical evidence and logical reasoning. They will recognize that scientific knowledge is dynamic and probabilistic in its nature, evolving as new evidence and ideas are presented, and accepted by a community of scientists only after rigorous review.

Procedural Knowledge (PK)

Students will understand and become proficient using skills, processes, and practices required for scientific inquiry and the application of science. This includes the skills necessary for reading comprehension, argumentation, communication, collaboration, computational thinking, mathematical analysis, and technological fluency.

Content Knowledge (CK)

Students will integrate knowledge and understanding of concepts related to life sciences, physical sciences, Earth and space sciences, and their real-world applications. They will think critically about these understandings to extend their knowledge of themselves and the world around them.

Decisions and Perspectives (DP)

Students will evaluate personal, societal, environmental, ethical, and sustainability issues relating to the applications of science and technology from multiple perspectives. This includes exploring science-related career pathways.
Specific Curriculum Outcomes

Specific curriculum outcomes (SCOs) identify what students are expected to know and be able to do for a particular course. They provide a focus for instruction in terms of measurable or observable student performance and are the basis for the assessment of student achievement across the province. PEI specific curriculum outcomes are developed with consideration of Bloom's Taxonomy of Learning and the Essential Graduation Competencies.

SCOs will begin with the phrase—Learners are expected to... .

Achievement Indicators (AIs)

Each specific curriculum outcome is described by a set of achievement indicators that support, define, and demonstrate the depth and breadth of the corresponding SCO. Taken together as a set, AIs support the SCO in defining specific levels of knowledge acquired, skills applied, or attitudes demonstrated by a student for that particular outcome.

It is important to note that AIs are not a prescriptive checklist to be taught in a sequential manner, are not a prioritized list of instructional activities, and are not a set of prescribed assessment items. Achievement indicators provide clarity and understanding to ensure instructional design is aligned to the SCO.

The set of achievement indicators for a given outcome begins with the phrase—Learners who have achieved this outcome should be able to... .

Elaborations

An elaboration provides a fuller description of the SCO and the instructional intent behind it. It provides a narrative for the SCO, gives background information where possible, and offers a broader context to help teachers gain a deeper understanding of the scope of the SCO. This may also include suggestions and/or reference supporting resources that may be helpful for instruction and assessment of the SCO.
Bloom’s Taxonomy

Bloom’s Taxonomy was published in 1956 as a framework for the purpose of classifying expectations for student learning as indicated by educational outcomes. David Krathwohl’s 2002 revision of this taxonomy expands on the original work by defining the relationship between the cognitive process dimension—how we expect students to come to know and think about the outcome—and the knowledge dimension—the category of knowledge expressed by the outcome.

A full understanding of the relationship between the cognitive process and knowledge dimensions of Bloom’s Taxonomy will serve students, teachers, and administrators by

- providing a framework for developing the specific curriculum outcomes (SCOs) for a particular course;
- identifying the type of knowledge and cognitive target of the outcome;
- providing a means for the alignment of specific curriculum outcomes with instructional activities and assessments; and
- providing a common language about the curriculum outcomes within all subjects to facilitate communication.

Cognitive Process Dimension

The cognitive process dimension classifies six types of cognition that learners may be expected to demonstrate or use as they work towards proficiency of any given specific curriculum outcome. The verb(s) that begins a specific curriculum outcome identifies the cognitive process dimension.

Table 1. Bloom’s Taxonomy—Cognitive Process Dimension

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remembering</td>
<td>Retrieve, recall, and/or recognize specific information or knowledge from memory.</td>
</tr>
<tr>
<td>Understanding</td>
<td>Construct meaning from different sources and types of information, and explain ideas and concepts.</td>
</tr>
<tr>
<td>Applying</td>
<td>Implement or apply information to complete a task, carry out a procedure through executing or implementing knowledge.</td>
</tr>
<tr>
<td>Analysing</td>
<td>Break information into component parts and determine how the parts relate or interrelate to one another or to an overall structure or purpose.</td>
</tr>
<tr>
<td>Evaluating</td>
<td>Justify a decision or course of action, problem solve, or select materials and/or methods based on criteria and standards through checking and critiquing.</td>
</tr>
<tr>
<td>Creating</td>
<td>Form a coherent functional whole by skillfully combining elements together and generating new knowledge to guide the execution of the work.</td>
</tr>
</tbody>
</table>
Knowledge Dimension

The knowledge dimension classifies four types of knowledge, ranging from concrete to abstract, that learners may be expected to acquire or construct. These types of knowledge include factual, conceptual, procedural, and metacognitive. The noun(s) or noun phrase(s) included in a specific curriculum outcome represents the type of knowledge for the knowledge dimension.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual</td>
<td>The basic elements students must know to be acquainted with a discipline or solve problems in it (e.g., knowledge of terminology; knowledge of specific details and elements).</td>
</tr>
<tr>
<td>Conceptual</td>
<td>The interrelationship among the basic elements within a larger structure that enables them to function together (e.g., knowledge of classifications and categories, knowledge of theories, models, and structures).</td>
</tr>
<tr>
<td>Procedural</td>
<td>How to do something, methods of inquiry, and criteria for using skills, algorithms, techniques, and methods (e.g., knowledge of subject-specific skills and algorithms, knowledge of subject-specific techniques and methods, knowledge of criteria for determining when to use appropriate procedures).</td>
</tr>
<tr>
<td>Metacognitive</td>
<td>Knowledge of cognition in general as well as awareness and knowledge of one’s own cognition (e.g., strategic knowledge, knowledge about cognitive tasks, including appropriate contextual and conditional knowledge, self-knowledge).</td>
</tr>
</tbody>
</table>

Taxonomy Tables

Combining the cognitive process dimension and knowledge dimension into one taxonomy table helps teachers to visualize the overall expectations. As teachers reflect deeply and collaborate to identify the types of cognition and knowledge required by each outcome, they will be better able to plan what student achievement will look, sound, and feel like in the learning environment, leading to student achievement of the outcomes at the targeted level.

The taxonomy tables in the PEI curriculum guides are constructed as two-dimensional tables where the knowledge dimension forms the vertical axis and the cognitive process dimension forms the horizontal axis. This results in a 24-cell matrix on which any specific curriculum outcome can be classified in terms of both dimensions.
SCO Structure

Examining the structure of a specific curriculum outcome is necessary to fully understand its intent prior to planning instruction and assessment. The verb(s) in the outcome relates to the expected level and type of thinking (cognitive process). A noun or noun phrase communicates the type of knowledge (i.e., factual, conceptual, procedural, or metacognitive) that is the focus of the outcome.

NoS1 explain, in relation to atomic theory, the role of evidence, theories and paradigms in the development of scientific knowledge and how it evolves as new evidence comes to light.

Curriculum Guide Layout

The curriculum guide layout is designed to highlight the critical elements/features of the provincial curriculum required for a given course.

Table 3. Details of Curriculum Guide Layout

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Name</td>
<td>Appears in the upper left hand corner.</td>
</tr>
<tr>
<td>Taxonomy Table</td>
<td>Appears in the upper right hand corner and is specific to the given outcome.</td>
</tr>
<tr>
<td>SCO Block</td>
<td>Appears in the coloured box; may contain a scope and sequence chart.</td>
</tr>
<tr>
<td>AI List</td>
<td>Appears in the body of the page immediately following the SCO.</td>
</tr>
<tr>
<td>EGC Map</td>
<td>Appears at the bottom of the page.</td>
</tr>
</tbody>
</table>
Specific Curriculum Outcomes (SCOs)

NATURE OF SCIENCE

Learners are expected to...

explain, in relation to atomic theory, the role of evidence, theories, and paradigms in the development of scientific knowledge and how it evolves as new evidence comes to light.

Achievement Indicators

Learners who have achieved this outcome should be able to...

- a. illustrate that science attempts to explain natural phenomenon;
- b. explain the role of evidence, theory, and paradigms in the development of scientific knowledge;
- c. explain how scientific evidence evolves as new evidence comes to light and as laws and theories are tested and subsequently restricted, revised, or replaced; and
- d. describe the importance of peer review in the development of scientific knowledge.

Essential Graduation Competencies Map
PATHWAY TO
SCIENTIFIC LITERACY K-12

O1 PLAY-BASED EXPLORATION
learning about myself and the world around me

O2 OPEN INVESTIGATIONS
Who are the scientists and engineers?

O3 FOUNDATIONS OF SCIENTIFIC LITERACY
What is science?

Figure 4. Pathways to Scientific Literacy
Pathway to Scientific Literacy

06 APPLIED SCIENCES
integrating knowledge to solve problems
- ENVIRONMENTAL SCIENCE
- ANIMAL SCIENCE
- AGRISCIENCE
- OCEANOGRAPHY
- ROBOTICS

05 CORE DISCIPLINES
digging deeper into content knowledge
- BIOLOGY
- CHEMISTRY
- PHYSICS

04 ELECTIVES
becoming well-rounded
- MATH
- BUSINESS
- ENTREPRENEURSHIP
- CAREER TECHNICAL EDUCATION
- ART
- CO-OP EDUCATION
- INDEPENDENT STUDY
- FLEXIBLE LEARNING OPPORTUNITIES
- COMPUTER SCIENCE

FLUENT

deeper scientific analysis
reasoning scientifically
greater independent inquiry
rigorous argumentation
considering perspectives
preparing for next steps
designing and developing

wondering questioning
investigating tinkering
exploring
playing

rigorous argumentation
preparing for next steps
designing and developing
deep science analysis
reasoning scientifically
greater independent inquiry
rigorous argumentation
considering perspectives
preparing for next steps
designing and developing

01 PLAY-BASED EXPLORATION
learning about myself and the world around me

ENVIRONMENTAL SCIENCE
OCEANOGRAPHY
ANIMAL SCIENCE
AGRICIENCE
ROBOTICS

04 OPEN INVESTIGATIONS
- Who are the scientists and engineers?
- Preparing for next steps
- Greater independent inquiry
- Critical thinking about issues
- Considering perspectives
- Designing and developing
- Deeper scientific analysis
- Reasoning scientifically
- Integrating knowledge to solve problems

GRADE 11 BIOLOGY - BIO521A PILOT DRAFT (JUNE 2022)
Foundations of Scientific Literacy

Overview

The four foundations of scientific literacy represent the complex and dynamic relationship of science and society that is depicted in Figure 5. How Science Works. Procedural knowledge and the Nature of Science are represented in this model by Exploration and Discovery, Testing Ideas, and Community Analysis and Feedback. The final results of science, Benefits and Outcomes, include the theories, models, and laws that help explain natural phenomena and are addressed by content knowledge. The Benefits and Outcomes section of the model also links to the foundation Decisions and Perspectives, since both relate to the application of science in our society.

Figure 5. How Science Works (University of California Museum of Paleontology 2016)
Nature of Science

What is science?

Science originated as a philosophy of nature, and it stems from the curiosity of humans and their ambition to understand themselves and the natural world around them. Science presumes that the world has a natural organization and is coherent; therefore, it can be understood. From the historical beginnings of science, humans have attempted to explain the natural world around them by looking for patterns, trends, similarities, and differences in everything from structure and composition to properties and behaviours.

The branch of philosophy known as epistemology (theory of knowledge) examines knowledge and the way we come to know. Many ways of knowing have been identified—such as faith, intuition, emotion, perception, memory, imagination, and reason. (Dombrowski, Rotenberg, Brick 2013) Knowing something scientifically involves rational reasoning. It is not the purpose of this science curriculum to rate one way of knowing as superior to another, but instead, enable students to develop the skills necessary to think scientifically. This begins with an understanding of the characteristics and principles of science.

Science is Limited and Dynamic

Science is limited to developing knowledge and understanding of the physical world. Science can only address questions that have testable solutions; questions such as those relating to the supernatural, ethics, value, or aesthetics are beyond the scope of science.

The body of knowledge that is produced by science is constantly evolving, and much of our understanding of the world has resulted from a steady and gradual accumulation of knowledge over time. Scientists are always proposing and testing new hypotheses, researching, and building bodies of evidence that can lead to new theories.

Science is never absolute but based upon probability and levels of certainty. However, this does not mean that everything we know as a result of science cannot be relied upon or used to make decisions. Many hypotheses are accepted when it can be shown that there is a 95% probability that the results are not found due to chance; the probability of some studies is higher (e.g., 99%) and approaches, but never reaches, 100%. It takes many studies, each stemming from a hypothesis, and each passing through a rigorous review process, before the scientific community supports the acceptance of a new theory. By the time a theory is accepted, often decades of scientific studies have contributed to its acceptance.

Science is Evidence-Based

Although the practices and types of studies used by scientists to interpret and describe our world are quite varied (Figure 7), the knowledge they create is considered scientific when it is based on valid empirical evidence. Empirical evidence is qualitative or quantitative observations (data) recorded using human senses or technology; raw data must be analyzed and interpreted before it is considered evidence. The evidence used to support scientific claims may or may not result from experimentation. When evaluating evidence consider the following questions.

Evaluating Evidence

- Is it relevant?
- Is it plausible?
- Is it sufficient?
- Is it reliable?
- Is there bias?
- Is it replicable?
Science Involves Rational Reasoning

The development of scientific claims and theories is characterized by an interplay between inductive and deductive reasoning. Inductive reasoning occurs when generalizations or inferences are made based upon observations. When scientists use generalizations to predict what will happen during a test or experiment, they are practicing deductive reasoning. While inferring and inductive reasoning are important aspects of science, students should recognize that making a conclusion without testing and using deductive reasoning is “jumping to a conclusion” (Figure 6) and is not “scientific thinking.” Engaging students in reasoning and argumentation in defense of their claims or conclusions is central to the development of critical thinking in science.

Science Language is Precise

Words commonly used to denote absolutes (e.g., all, none, never) are avoided in scientific communication to reflect that science cannot give complete certainty. Even fact, a statement of absolute truth in lay language, is used differently in science. This is also true for the terms hypothesis, law, and theory.

- A fact is a readily verifiable observation that is generally accepted (e.g., if you drop a coin from your hand, it will fall to the Earth). Facts in science are still open to inquiry and therefore able to change.
- Hypotheses are tentative explanations describing a causal relationship. Hypotheses are not guesses but stem from problems, questions, observations, logic, other hypotheses, and theories. The development of a hypothesis involves elements of curiosity, creativity, imagination, and intuition. Hypotheses lead to predictions of what will happen under a given set of circumstances (i.e., tests or investigations). Hypotheses can be accepted, rejected, or modified as a result of evidence. While hypotheses can never be proven true with 100% certainty, they can be proven to be false. Many varied hypotheses can be generated from one new scientific idea.
- A law is a descriptive generalization, often mathematical, that concerns patterns of behavior regarding some aspect of the natural world. Laws differ from theories in that they are not explanations; they are similar in that both can be used to make predictions. It is a misconception that laws evolve from theories. It is also a misconception that laws are more credible than theories because they are definite and cannot be altered. Laws, like theories and hypotheses, can be rejected or modified as new evidence is found.

Examples of Laws
- Laws of Thermodynamics
- Law of Natural Selection
- Ohm’s Law
- Coulomb’s Law
- Universal Law of Gravitation
A scientific theory is more than a passing, tentative suggestion, as is implied by its use in common language. A theory, as it is used by scientists, is a well substantiated explanation for a broad set of phenomena within the natural world. A theory synthesizes hypotheses, laws, principles, and facts from a broad range of studies and can involve a variety of fields. In addition to their ability to predict new and a diverse range of phenomena, theories are evaluated in terms of their ability to be tested, their simplicity (how many assumptions are required), and how well they fit into established scientific understandings. Theories maintain acceptance until disproven.

Science is a Collaborative, Human Endeavour

The science community is global and includes people of all genders, societies, cultures, and ethnicities. While everyone uses science in some way, it is the members of this community who contribute to our deepening understanding of the world. This is due to the fact that scientific research often requires years of training and access to highly specialized equipment and materials that are not at the disposal of the average citizen.

Science is a collaborative process. The proliferation of information that has been generated by this discipline has heightened the need for specialization in increasingly narrower fields. To compensate for this, scientists often work in teams composed of a number of specialists from a variety of fields. Technology has facilitated this collaboration by eliminating the requirement for team members to work in the same geographical location. Online publishing makes the findings of studies available so that investigations can be repeated, critiqued, or developed in new directions. The rigorous process of critical review is frequently completed by peers who have an expertise within the area being studied. Whether by sharing expertise or by providing feedback, collaboration is an essential aspect of science.

Skills and Attitudes for Collaboration

- Considering others’ ideas and perspectives
- Criticizing ideas, not people
- Accepting criticism
- Being persuasive
- Listening
- Showing initiative
- Asking for and offering help
- Sharing ideas
- Being responsible, completing tasks
- Taking turns
- Clarifying and asking for clarification
- Following directions

Examples of Theories

- Atomic Theory
- Germ Theory of Disease
- Big Bang Theory
- Theory of Evolution
- Theory of General Relativity
Procedural Knowledge

What do scientists do?
The focus of many scientific investigations (studies) is to determine the relationship between variables. Of interest to scientists is 1) Is there a relationship? 2) Is the relationship correlational? 3) Is the relationship causal? In correlational relationships, there is an association between the variables. However, it is not known whether or not one causes the other to occur. In causal relationships, one variable results in the response or occurrence of another in a consistent manner. Causal relationships can be complex such as is seen with chain reactions, biofeedback mechanisms, and biosphere nutrient cycles. Understanding cause and effect is an important step towards controlling or modifying the cause in ways that address a human need. Often, when a relationship between two variables is assumed to be causal, it is only correlational. Understanding the difference between these two concepts is a fundamental aspect of scientific literacy.

Examples of No Relationship, Correlational, or Cause and Effect

- Smoking and cancer (Causal)
- Genetically modified organisms (GMOs) and decrease in biodiversity (no Relationship)
- Climate change and human activity (Complex Causal)
- Vaccines and autism (no Relationship)
- Megadoses of vitamins and health (Correlation)

Correlations can be positive or negative. If the correlation is positive, the variables move in the same direction (e.g., an increase in attendance is associated with an increase in achievement). If the correlation is negative, a change in direction of one variable is associated with a change in the opposite direction of the other (e.g., an increase in the number of people vaccinated is associated with a decrease in the incidence of a disease—this is also causal). In science, establishing a correlational relationship requires more than observation and inductive reasoning. It requires data collection and statistical analysis, which are used to determine both the direction and strength of the correlation. (e.g., Pearson’s correlation coefficient is calculated to measure the linear relationship between two variables.)

Correlational relationships can appear odd, until one remembers that they do not necessarily represent cause and effect. Two examples that demonstrate this are the positive correlation between smoking and alcoholism, and the positive correlation between ice-cream sales and violent crimes. Ice-cream sales do not cause crime. However, correlation may imply a causal relationship and warrant further examination, as was the case with smoking and lung cancer. Smoking was once thought to be beneficial to health. However, the mass production of cigarettes in the early part of the 20th century soon revealed a positive correlation between smoking and lung cancer. The question remained: was tobacco a causative agent?

Pure causation is extremely hard, and arguably impossible, to prove with 100% certainty. This is due to the fact that real life is complex with a variety of confounding variables that are unable to be completely identified and controlled. Sir Richard Doll and Sir Austin Bradford Hill confirmed the causal link between smoking and cancer in the 1950s. Part of their work involved establishing criteria (Hill’s postulates) to increase the strength of causal claims. (Oleckno 2002) The more of these postulates that are true for a given relationship, the more likely it is causal in nature. Tools such as Hill’s postulates, together with multiple lines of evidence gathered from examination of 7,000 studies over the following decade, resulted in consensus in 1964 that smoking does cause cancer.

Questions to Help Determine Cause and Effect (based on Hill’s postulates)

- Does the cause come before effect?
- What is the strength of association (measured by statistics)?
- Is there a consistent association?
- Is there a mathematical relationship between variables?
- Does it make sense in terms of other established science?
Categories of Scientific Studies

One way to classify scientific inquiries is to divide them into two categories: experimental studies and observational studies (Figure 7). (Oleckno 2002) In experimental studies, the investigator has control over how the variables are manipulated. For example, in a study on the effect of temperature on the rate of a chemical reaction, the experimenter would manipulate the temperature (cause) and measure the responding change in reaction rate (effect). Confounders such as agitation and the type of chemical would be controlled. These forms of causal investigations are frequently equated with “inquiry” in science education. Observational studies, on the other hand, do not include direct manipulation and control of variables by the experimenter. The preferred study design is best determined by the nature of the question.

Randomized, controlled experimental investigations remain the gold-star method for validating cause and effect phenomena. A familiar type of randomized controlled study is one used in drug trials where some subjects are given the experimental drug to see if it causes an effect. For others, the drug (which is the independent variable) is replaced with a placebo; these subjects are the control group and should not experience the effect (dependent variable). If the subject is unaware of which treatment they received, the experiment is considered blind. This helps minimize bias that would reduce the quality of the evidence.

Observational studies can be descriptive or analytical in nature. Descriptive observational studies are not directed by a specific question but involve collecting information that may lead to the development of a hypothesis. Analytical-observational examinations, like experimental inquiries, are designed to answer a proposed question. However, due to ethical considerations, they do not allow for direct experimentation. Analytical-observational studies can still demonstrate causal relationships with a high degree of certainty when tools such as Hill’s postulates are used. To improve their ability to determine cause and effect, analytical-observational investigations rely on methods such as careful design (e.g., use of longitudinal studies) and rigorous statistical control. Observational studies are frequently used in medical research, and appear to be the ones that are most often surrounded by controversy in the media, especially when a cause and effect relationship is suggested.

Modelling: Investigating Complex Systems

![Figure 7. Classification of Scientific Studies. Adapted from Oleckno, 2002](image-url)
Components of Scientific Inquiry

The process of developing scientific knowledge is a complex interplay of experimentation; current knowledge; modification of theories; debate; social, cultural, political, and economic influences; and peer review and acceptance. This observation of science has often resulted in the declaration, “There is no one scientific method.” This statement is true in the sense that there are many ways to inquire or answer scientific questions, but it has seemingly resulted in a misconception in science education that the approach to scientific investigation is vague and that there are no common elements in the way that scientists inquire. While study designs (Figure 7) vary depending on the question being asked, the process of developing new scientific knowledge always involves a number of aspects or stages (Figure 8). These aspects include asking testable questions about the natural world, collecting and analyzing evidence to answer those questions in a logical manner, and sharing that knowledge with other experts so that it can be skeptically reviewed and validated by other lines of evidence. Each stage of scientific inquiry is associated with specific skills and competencies (Table 4).

Stages of Scientific Inquiry
- Initiating and Planning
- Performing and Recording
- Analysing and Interpreting Data
- Communicating Findings

Figure 8. Scientific Inquiry Process Wheel
Table 4. Stages of the Scientific Inquiry Process and Selected Skills

<table>
<thead>
<tr>
<th>Component of Scientific Literacy</th>
<th>Detail</th>
<th>Skills and Competencies</th>
</tr>
</thead>
</table>
| Initiating and Planning (creativity and innovation) | Exploring, tinkering, and asking questions | observing
activating prior knowledge
brainstorming
researching for background information |
| Hypothesizing | selecting and refining questions or hypotheses
inferring (inductive reasoning), predicting |
| Designing and investigating | planning (time, materials, sequence)
identifying variables (independent, dependent, control)
identifying data to be collected that will help answer the question
adapting or developing a procedure
performing a trial run |
| Performing and Recording (manipulative skills and problem-solving) | Performing an investigation and collecting evidence | using equipment and techniques safely or running computer simulations
building prototypes, developing models
following instructions and sequencing tasks
reading digital and analog scales
recording quantitative and qualitative data
measuring accurately, recording precision of measurement
managing time, evaluating progress, problem-solving as necessary
collaborating |
| Analyzing and Interpreting Data (higher order/critical thinking) | Analyzing and interpreting evidence | analyzing patterns and trends
using mathematical processes, knowledge, and skills
graphing
transforming representations (e.g., graphs ↔ tables, diagrams ↔ text)
comparing and contrasting
classifying
identifying cause and effect, or correlational relationships
making conclusions |
| Evaluating errors | evaluating scientific errors (degree of reliability and certainty of measurement, and control of variables)
reflecting on ways to improve future investigations and data |
| Communicating Findings (synthesizing, reasoning, argumentation) | Defending and communicating findings | constructing explanations
using writing, media, visual literacy, and technology skills to create a product that communicates findings/makes a claim
explaining (discussing) results
using deductive reasoning, evidence, and argumentation to defend claim (accept or reject a hypothesis) |
| Proposing further questions | identifying new questions that arise from the investigation |
A system is a collection of components that interact with one another so that the overall effect is much greater than that of the individual components. Examples of systems are educational systems, political systems, transportation systems, the solar system, the respiratory system, electrical systems, mechanical systems, and ecosystems.

Systems thinking is an essential higher order thinking skill that involves thinking about a whole in terms of its parts, and alternatively, about the parts in terms of how they relate to one another and the whole. It involves analyzing the components, dynamics, and the interactions within and between systems. Examining systems in terms of stability, equilibrium, and rate of change is a major focus of both science and engineering.

Models are one tool used by scientists and engineers to help them understand natural and material systems. Models facilitate the understanding of abstract ideas and testing of relationships between variables in complex systems. Models, such as the atomic model, are refined as understanding of a phenomenon evolves.

Scientific models can take many forms. Conceptual models include:

- **physical replicas** (e.g., model of the cell, landforms, water systems of area)
- **diagrams that demonstrate the relationship of subatomic particles in the atom** (Figure 9)
- **flow charts that depict energy flow in a food web** (Figure 10) or electricity transmission rates (Figure 11)
Mathematical models can vary from simple mathematical formulas to computer simulations. The latter extends the human capacity to examine processes present in systems that are too complex or abstract to work with in a practical manner (e.g., global warming, climate change, rising sea levels, population dynamics of a species, forest stand growth, behaviour of a brake system prototype). Simulations are computer programs that connect various components (variables) of the system using mathematical relationships. They allow the experimenter to explore “what if” scenarios by giving them the flexibility to control certain variables while changing others. This enables greater understanding of complex interactions within the system and how these interactions impact the whole system. When students use computer simulations (e.g., Physics Education Technology (Wieman 2016)) to explore cause and effect relationships based on gas laws, or circuit electricity, they are practising science by using models. Students should be made aware, however, that because models are oversimplifications of real life, they have limited predictive powers.

Figure 11. Stock and Flow Conceptual Model
Content Knowledge

What have scientists learned?

There are many fields of science (e.g., chemistry, physics, biology, geology), each of which is associated with specific theories (explanations), models, concepts, and principles. In science education, multiple fields are often grouped under the categories of life science, physical science, and Earth and space science.

Life Science

Life science examines the growth and interactions of life forms within their environments in ways that reflect their uniqueness, diversity, genetic continuity, and changing nature. Life science includes fields of study such as ecology, zoology, botany, cell biology, genetic engineering, and biotechnology.

Physical Science

Physical science, which encompasses chemistry and physics, is concerned with matter, energy, forces, and the relationships between them. Momentum, change, and the conservation laws of mass and energy are addressed by physical science.

Earth and Space Science

Earth and space science bring global and universal perspectives to students’ knowledge. Earth, our home planet, exhibits form, structure, and patterns of change, as does our surrounding solar system and the physical universe beyond it. Earth and space science includes fields of study such as geology, meteorology, and astronomy.

Interdisciplinary Concepts

In addition to the knowledge generated by specific fields of science, there are a number of interdisciplinary concepts that are common to all sciences. For the purpose of this document, these concepts are grouped into five categories: matter; patterns in form and function; energy; cause and effect; and equilibrium, stability, and change within systems. Many of these concepts are not the exclusive domain of science but are also found in mathematics, technology, business, government and politics, education, and law. These themes are fundamental to the conceptual understanding of science and facilitate integrated and higher order thinking by providing a common framework on which students can organize and scientific knowledge. At every opportunity, these concepts should be taught explicitly within the context of the science topic being studied. Only after accumulating a wealth of examples, illustrations, and experiences will students integrate knowledge related to these abstract concepts into their thinking and synthesize their understanding of science. A summary of the more important aspects of each of five interdisciplinary concepts follows.

Interdisciplinary Science Concepts

- Matter
- Patterns in Form and Function
- Energy
- Cause and Effect
- Equilibrium, Stability, and Change within systems
Foundations of Scientific Literacy: Content Knowledge

Matter
The identification, examination, transformation, and cycling of matter within and between systems is of interest to all scientific disciplines. Broad foundational concepts relating to matter include the following:

- All living and non-living entities on the Earth are composed of matter, which has mass and occupies space.
- The smallest unit of matter is the atom.
- Earth’s matter is of a finite quantity.
- All matter—including that of plants, animals, elements, and compounds—is formed from various arrangements of atoms; principles that apply to the structure of matter in the physical (inorganic) world also apply to the organic world.
- Atoms are rearranged but not destroyed during chemical change; mass is conserved during chemical change.
- The smallest unit of living matter is the cell; all cells arise from other cells.
- Living matter or “life” is characterized by homeostasis (i.e., regulation of an internal environment), and the ability to metabolize, (i.e., produce energy from chemical reactions), move, grow, reproduce, respond to stimuli, and adapt to the external environment.

Patterns in Form and Function
Form refers to the physical structure, the shape, size, and composition of living and non-living things. Interdisciplinary concepts relating to form and function include the following:

- There is a vast array of living and non-living forms of matter.
- Science classifies matter on the basis of similarities and differences in form (structure) and function.
- There are clear relationships between structure and function in the components of natural and human-made systems. (For example, metallic elements contain atoms arranged in a manner that imparts properties such as conductivity and malleability; anatomical structures such as hollow bones in bird wings support flight.)

Energy
Energy, the ability to do work, is a central concept of science because all physical phenomena and interactions involve energy. Physics describes the interaction of matter and energy at the universal, macroscopic, and atomic levels and uses mathematical models such as the Newton’s laws and Einstein’s theory of special relativity to explain some of these interactions. Physics is concerned with concepts such as the conservation of energy and its transformation into various forms, motion, and forces. Chemistry focuses on the amount of energy required for chemical reactions to occur and the resulting energy released or absorbed from the surroundings during those reactions (e.g., combustion of fuels). In the life sciences, the flow of energy through individuals and ecosystems controls, maintains, and drives diverse phenomena such as photosynthesis, growth, metabolism, and interactions within food chains. Fundamental concepts relating to energy include the following:

- The sun is the source of radiant energy for the Earth.
- Energy, like matter, can be transferred or transformed, but never created nor destroyed.
- All matter contains energy as a result of its motion (kinetic energy), position (potential energy), or atomic makeup.
Cause and Effect

Cause and effect has been more thoroughly addressed in “Procedural Knowledge” p.20. Fundamental concepts relating to cause and effect include the following:

• In causal relationships between variables, one variable results in the response or occurrence of another in a consistent manner.
• A major focus of science is identifying, describing, and explaining cause and effect relationships. When possible, these relationships are described mathematically.
• Causal relationships can be complex, such as is seen with chain reactions, biofeedback mechanisms, and biosphere matter cycles.
• Understanding cause and effect helps scientists to predict.
• Correlation does not imply causation.

Equilibrium, Stability, and Change within Systems

A system is an abstract concept that is used in science to describe the part of the universe that is the focus of study. The interaction of components within a system is of interest to all sciences (“Modelling: Investigating Complex Systems” p.21). Fundamental concepts relating to systems include the following:

• A system is a collection of components that interact with one another so that the overall effect is much greater than that of the individual components.
• The boundaries of a system are determined by the observer and vary in scale (i.e., atomic, microscopic, macroscopic, and universal).
• Within living and non-living systems, dynamic (causal) relationships occur that involve changes in matter and energy.
• A system in which all processes of change appear to have stopped, or which displays constancy or stability is in a state known as equilibrium. When at equilibrium, opposing forces or processes balance in a static or dynamic way.
• Systems move towards equilibrium, a state of stability or balance (i.e., lowest potential energy).
• A cause, such as an outside force or an exchange of energy/matter with the surroundings, will cause a stable system to shift away from equilibrium and to exhibit change.
• Change in systems can occur as a steady trend, in a cyclical fashion, irregularly, or in any combination of these patterns.
• It is the rate of change that is often of most interest to scientists, since the rate of change can have a greater impact than the change itself on the stability of a system.
• Scientists use models as tools that facilitate the understanding and testing of relationships between variables in systems.
Decisions and Perspectives

How can science be applied to solve problems?

Science investigates the natural world to develop theories that explain how it works, and laws that describe its patterns of behaviour. Science is not focused on practical outcomes. Instead, technology and engineering apply scientific understanding to propose solutions to human needs or desires. Technology and engineering, like science, are creative human activities with a long history in all cultures of the world. While the three disciplines differ in purpose and methodologies, they are inextricably linked.

The needs addressed by the application of science often arise from humans adapting to and/or modifying their environment. The solutions include new products, processes, systems, or structures. For example, the application of science in agriculture addresses the need to feed an exploding population by developing new equipment, fertilizers, crops, animal breeds, and computer technologies that automate tasks such as feeding and milking. Mechanical, electrical, and civil engineering enable humans to dam and divert water in quantities that enable large-scale irrigation and the production of hydroelectric power. The application of science in medicine has resulted in technologies that detect disease in the early stages; new processes that can repair, replace, and rebuild parts of the human body; medicines that combat pathogens and regulate body functions; and bioengineering techniques that allow us to modify genes and grow new organs in alternative species.

What are the considerations when applying science?

Science is not a matter of opinion. However, decisions regarding how we should apply science, or act upon what we have learned, are based upon opinions that are influenced by various personal, political, cultural, ethical, and economical perspectives. For example, science has resulted in our understanding of chemical and biological principles that enabled the development of pesticides, tools to reduce disease and improve crop yields. However, opinion differs regarding which pesticides to use, when to use them, and in what quantity they should be used. To complicate things further, perspectives shift as our understanding progresses. A case in point is the story of the synthetic pesticide DDT that was developed in the 1940s to combat insect-borne diseases such as malaria. As evidence mounted about this chemical's severe adverse effects on the environment, and predatory birds in particular, there was a call to ban DDT in most countries and to use other pesticides more judiciously.

Decisions that we are required to make vary from personal day-to-day decisions to complex ethical issues that can affect entire species, including our own. As individuals, we make daily choices regarding food, health, and energy, often basing them upon scientific understanding. For example, studies on climate change have created a greater awareness that the burning of fossil fuels (e.g., coal, oil, gasoline) has caused an increase in atmospheric carbon dioxide, which has in turn resulted in climate change. This information has inspired many to consider alternative ways to heat their homes and travel to work. As consumers, our decisions have influenced research and the development of new technologies such as solar panels, windmills, and geothermal heating. As citizens in a democracy, we can influence the development and acceptance of policies, such as the United Nations Kyoto Protocol. Decisions at this level can affect the entire planet.

As science continues to open doors for innovation and the development of new technologies, we will continue to be called upon to make difficult decisions that require weighing the risks and benefits of these advancements. It is important that we teach our students how to think ethically about the application of science and technology and to consider the question, “Just because we can, should we?” Human ingenuity is frequently accompanied by impacts that can reach far around the globe and long into the future. Therefore, it is imperative for both sustainability and global harmony that we develop scientifically literate, ethical, and critical thinkers who are capable of deciding upon reasonable courses of action, while considering many varying perspectives. This requires that students have the opportunity to practise flexible thinking, listening to others, questioning, reasoning, and synthesizing their understanding.
STEAM Problem-Solving Processes

The acronym STEAM represents Science, Technology, Engineering, Art, and Math. STEAM education is a pedagogical approach which provides students the opportunity to integrate learning associated with these five disciplines while solving meaningful problems.

The original acronym, STEM was introduced in the 1990s by the National Science Foundation. The ‘A’ was added to STEM in recognition that creative thinking normally associated with art is as necessary as analytical thinking when solving problems in science, engineering, and technology. The ability to think mathematically is also an integral aspect of these three fields.

Problem-solving is an iterative, multi-layered and multi-stepped process that requires flexible thinking patterns (Figure 12). The analytical thinking component involves selecting, gathering, sorting, comparing, and contrasting information. Analytical thinking is convergent thinking which helps to identify and narrow possible solutions. Creative thinking is required to solve broad, open-ended problems that do not have a readily apparent solution and are not single-outcome specific. Creative processes involves divergent thinking or out-of-the-box thinking. A creative thinker may consider solutions that are based on intuition and emotion rather than logic. Creative solutions can also arise from observation, inspiration, and serendipity. STEAM activities are designed to encourage the flexibility to move back and forth between these two cognitive processes. They also support the development of other habits of mind necessary for STEAM such as persistence and resilience.

All five disciplines do not have to be targeted at the same time during a STEAM activity. To obtain the benefit of STEAM-based instruction, the problem presented should not have a readily apparent solution or be single outcome specific. The problem should be open-ended and designed in a way that the learner has more than one possible path to the solution. Productive struggle and reflection should be encouraged.

Table 5. STEAM Problem-solving

<table>
<thead>
<tr>
<th>Problem-Solving Component</th>
<th>Science</th>
<th>Technology</th>
<th>Engineering</th>
<th>Arts</th>
<th>Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature of Problem</td>
<td>Extending our understanding of the natural world</td>
<td>Developing ways to extend human capacity</td>
<td>Addressing a human need or concern</td>
<td>Expressing and interpreting human perception</td>
<td>Discovering mathematical relationships</td>
</tr>
<tr>
<td>Name of Process</td>
<td>Scientific Inquiry</td>
<td>Technology Design</td>
<td>Engineering Design</td>
<td>Creative Process</td>
<td>Mathematical Analysis</td>
</tr>
<tr>
<td>Initial Question</td>
<td>What causes...?</td>
<td>How can I...?</td>
<td>How can I make...?</td>
<td>Imagine if...</td>
<td>What is the relationship...?</td>
</tr>
<tr>
<td>Solutions and Products</td>
<td>Communications of new knowledge</td>
<td>Digital products, digital processes</td>
<td>Structures, equipment, machines, processes</td>
<td>Aesthetic expression, products, processes</td>
<td>Numerical solutions, equations</td>
</tr>
</tbody>
</table>
Considerations for Instruction

STEAM problem-solving processes (i.e., scientific inquiry, technology and engineering design, the creative process, and mathematical analysis) differ in the nature of the question and the solution or product. However, all are based on the generic problem-solving process. All are iterative processes that involve reflection, evaluation, and feedback throughout. All require analytical thinking and creative thinking. The figures below compare the problem-solving processes for science, engineering, art, and math.

Figure 12. Generic Problem-solving Process

Figure 13. Comparison of STEAM Problem-solving Processes
Interdisciplinary Skills

In addition to problem-solving, a number of interdisciplinary skills are required in science.

Mathematical Skills
Mathematics can be considered to be the language of many sciences. Mathematics is used to describe relationships, enable predictions, quantify, and validate evidence. Science provides a concrete context in which students can develop skills such as mental mathematics and estimation, problem-solving, mathematical reasoning, visualization, and connecting mathematical ideas to the real world. During Grades 7-10 mathematical skills used in science include, but are not limited to

- measuring and applying appropriate units for quantities such as length, mass, and volume;
- performing unit conversions;
- solving problems using equations;
- expressing patterns and relationships mathematically;
- determining totals, averages, percentages, ratios, and proportions;
- presenting and interpreting data in graphical and tabular form;
- visualizing space and shape from different perspectives.

Technology Skills
Technology is concerned with developing innovative solutions to problems arising from humans adapting to their environment. Science and technology have been inextricably linked throughout history. Technology is constantly producing new developments that have potential use in science and lead to a greater understanding of our world. New scientific developments, in turn, can inspire further technological innovations.

Technologies used in science include tools and equipment (e.g., thermometers, microscopes) common to science investigations and data gathering, as well as communication and information technologies. Students should develop skills specific to both forms of technology. Communication and information technologies (CITs) can be used during all steps of the science inquiry process.

Manipulative Skills
Manipulative skills are those skills involved with the handling of equipment and material. Developing confidence in using equipment, materials, and techniques enables students to explore and inquire in a safe manner while focusing on the concept being investigated rather than “how to.” These skills take time to develop and require that students in Grades 7 to 12 be given frequent opportunities to independently use lab equipment in a risk-free atmosphere. During the intermediate years, students should develop proficiency in skills and dexterity required when

- making accurate measurements (e.g., length, mass, volume, time, temperature);
- using instruments (e.g., thermometers, multimeters);
- selecting and using appropriate glassware for measuring and mixing;
- using and caring for instruments, including knowing their use, parts, and adjustments (if applicable);
- employing safe practices when using chemicals and equipment;
- connecting components, constructing simple apparatuses, and creating simple innovations.
Considerations for Instruction

Data Collection and Analysis

- **Data loggers** (e.g., temperature probes, motion detectors) permit students to collect and analyze data in real time.
- **Spreadsheets and graphing software** can facilitate the analysis and display of student-collected data or data obtained from databases.

Visualization and Imaging

- **Simulation/modelling software** provides opportunities to create and/or use models to explore concepts that are difficult to visualize, and perform experiments that are unsafe or difficult to perform in the classroom.
- **Students may collect their own digital images and video recordings for analysis, or they may access digital images and online video software to help enhance understanding of scientific concepts.**

Communication and Collaboration

- **In addition to the usual tools involved in accessing information, and creating reports and presentations, the Internet can be a means of networking with scientists, teachers, and other students through social media, cloud computing, blogs, and video conferencing to collect and share information, and work on projects collaboratively.**

Language Skills

Language is the principal means through which students communicate with others and make meaning of scientific concepts, phenomena, and claims. These skills can be classified in terms of the input and output of information.

The input of information is addressed through reading, listening, and viewing. Learning about scientific concepts, claims, and ideas involves comprehending specialized vocabulary and understanding how to interpret informational texts such as textbooks, magazine articles, lab instructions, and case studies and their features (graphs, charts, tables, and diagrams). Comprehending the intent and purpose of text when evaluating the scientific validity of claims requires the ability to interpret tone and bias, and to determine the logic of arguments.

The output of information involves communication by speaking, writing, and representing. The purpose of scientific writing is to communicate new findings so that they can be retested, validated, and expanded upon by other scientists in the global scientific community. The style of writing employed by scientists works to this purpose by being succinct and precise, and by avoiding descriptive and colloquial words that may create bias or not be universally understood. Nomenclature rules (i.e., naming rules) for organisms and chemicals are determined by organizations such as IUPAC (International Union of Pure and Applied Chemistry) and the ICZN (International Commission on Zoological Nomenclature). When students write scientifically, they not only construct new understanding of the scientific concept being examined, but they also practise the basic principles inherent to the nature of science.
Considerations for Instruction

Instructional Strategies

Children arrive in the school system with a natural curiosity and an interest in investigating and exploring the world about them. They use reasoning based on their experiences as they try to understand how things work. This innate curiosity and interest can be encouraged through a well-balanced science program when students are provided with opportunities to explore, talk, think, write, read, visualize, apply, and design.

Teaching is both a science and an art. There is a wealth of instructional strategies described in the literature that teachers have at their disposal when creating a learning environment that best suits the needs of their students. Figure 16 depicts strategies specific to literacy and numeracy development, as well as those that can be classified within four broad categories of instruction: community-based learning, direct instruction, indirect instruction, and interactive instruction.

Community-based Learning is learner-centered and activity-oriented; builds connections to the community through real-life experiences; emphasizes the process of learning rather than the product; purposefully fosters the development of individual student initiative, self-reliance, and self-improvement; includes learning in partnership with another individual or as part of a small group; and offers flexible and varied learning opportunities.

Direct Instruction is highly teacher-directed; effective for providing information or explicit teaching; and is useful when developing step-by-step skills, introducing other teaching methods, or actively involving students in knowledge construction.

Indirect Instruction is mainly learner-centered and complements direct instruction; and it involves learning concepts through the contexts of inquiry, induction, problem-solving, decision making, and discovery.

Interactive Instruction relies heavily on discussion and sharing among learners; allows for a range of groupings and interactive methods; and includes total class discussions, small group discussions, or students working collaboratively on projects.

The gradual release of responsibility for learning is an instructional strategy commonly used to teach process skills. It begins with the teacher modeling the process and then purposefully scaffolding learning in a manner to move the student towards greater independence. In the science classroom, this strategy is powerful when teaching complex processes such as problem-solving, experimental design, and written argumentation.

“A rich science education has the potential to capture students’ sense of wonder about the world and to spark their desire to continue learning about science throughout their lives.”
(National Research Council 2012)
Considerations for Instruction

Figure 16. Science Teaching Strategies
Assessment and Evaluation

Assessment and evaluation are integral components of the teaching and learning process. They are continuous activities that are planned for and derived from specific curriculum outcomes (SCOs) and should be consistent with instruction. Effectively planned assessment and evaluation improves and guides future instruction. It also promotes learning, builds confidence, and develops students’ understanding of themselves as learners.

Assessment is the process of gathering evidence about student learning. Assessments need to be reflective of the cognitive process and type of knowledge indicated by the SCO (“Bloom’s Taxonomy” p.10). The achievement indicators inform teachers of the depth and breadth of skills, knowledge, and understandings expected for each SCO.

Assessment has three interrelated purposes:

- assessment for learning to guide and inform instruction (formative)
- assessment as learning to involve students in self-assessment and setting goals for their own learning (formative)
- assessment of learning to determine student progress relative to curriculum outcomes (summative)

Triangulation is a process by which a teacher uses evidence about student learning from three different sources. These sources include conversations, observations, and products. Collecting data from a balance of these sources ensures reliable and valid assessment of student learning.

Evaluation involves analyzing and reflecting upon various forms of evidence of student learning and making judgments or decisions regarding student learning based upon that evidence.

Effective assessment strategies

- must be valid in that they measure what is intended to be measured and are reliable in that they consistently achieve the same results when used again, or similar results with a similar group of students;
- are appropriate for the purpose of instruction and learning strategies used;
- are explicit and communicate to students and parents the expectations and criteria used to determine the level of achievement;
- are comprehensive and enable all students to have diverse and multiple opportunities to demonstrate their learning consistently, independently, and in a range of contexts in everyday instruction;
- accommodate the diverse learning needs and experiences of the students;
- allow for relevant, descriptive, and supportive feedback that gives students clear directions for improvement, and engages students in metacognitive self-assessment and goal setting that can increase their success as learners;
- assist teachers in selecting appropriate instruction and intervention strategies to promote the gradual release of responsibility of learning.
The following table provides examples of assessment strategies that can be used in science. The type of assessment should be selected purposefully to ensure that it matches the specific curricular outcome(s) describing what students are expected to know and do. Teachers should also consider the variation of assessments used and the assessment interval.

Table 6. Science Assessment Strategies

<table>
<thead>
<tr>
<th>Self/Peer Assessment</th>
<th>Self/Peer Assessment</th>
<th>Observations/Conversations</th>
<th>Pencil Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formative</td>
<td>Summative</td>
<td>Formative</td>
<td>Summative</td>
</tr>
<tr>
<td>written practice questions</td>
<td>debates/arguments presentations</td>
<td>planned observations (formal)</td>
<td>portfolio/science notebook</td>
</tr>
<tr>
<td>science journal</td>
<td>safe lab practices</td>
<td>unplanned observations (informal)</td>
<td>lab report</td>
</tr>
<tr>
<td>learning reflections</td>
<td>lab skills</td>
<td>small group discussion</td>
<td>case study analysis</td>
</tr>
<tr>
<td>homework</td>
<td>collaborative group work</td>
<td>interactive questioning</td>
<td>experimental design</td>
</tr>
<tr>
<td>formative quizzes</td>
<td>applying experimental</td>
<td>student-teacher conference</td>
<td>analysis</td>
</tr>
<tr>
<td>descriptive feedback</td>
<td>and engineering design processes</td>
<td>anecdotal records</td>
<td>tests</td>
</tr>
<tr>
<td>exit slips</td>
<td>processes</td>
<td></td>
<td>artifacts with reflections</td>
</tr>
</tbody>
</table>

Considerations for Instruction
Biology 521A Course Overview

Outcome Summary

The outcomes of Biology 521A are categorized into four scientific literacy foundations (Nature of Science, Decisions and Perspectives, Procedural Knowledge and Content Knowledge). Table 7 below shows the summary of specific curriculum outcomes for Biology 521A.

Table 7. Summary of Curriculum Outcomes

<table>
<thead>
<tr>
<th>GCO</th>
<th>Code</th>
<th>Specific Curriculum Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature of Science; Decisions and Perspectives</td>
<td>NoS 1</td>
<td>analyse the development of a technology related to the diagnosis or treatment of a disease</td>
</tr>
<tr>
<td></td>
<td>DP 1</td>
<td>construct arguments to support a decision or judgment, using examples and evidence and recognizing various perspectives</td>
</tr>
<tr>
<td>Procedural Knowledge</td>
<td>PK 1</td>
<td>apply knowledge and understanding of safe laboratory protocols and procedures.</td>
</tr>
<tr>
<td></td>
<td>PK 2</td>
<td>apply appropriate techniques, procedures, and technologies for collecting and analysing data to solve problems.</td>
</tr>
<tr>
<td></td>
<td>PK 3</td>
<td>use uncertainty in data measurement and data processing.</td>
</tr>
<tr>
<td></td>
<td>PK 4</td>
<td>evaluate scientific phenomena using argumentation.</td>
</tr>
<tr>
<td></td>
<td>PK 5</td>
<td>design or modify an experiment identifying and controlling major variables</td>
</tr>
<tr>
<td></td>
<td>PK 6</td>
<td>use appropriate language and formatting conventions to effectively communicate plans, procedures, data, results, and conclusions of research and experimentation.</td>
</tr>
<tr>
<td>Content Knowledge</td>
<td>CK 1.1</td>
<td>describe the structure and function of important biochemical compounds (water, carbohydrates, lipids, and proteins).</td>
</tr>
<tr>
<td></td>
<td>CK 1.2</td>
<td>describe how the cell membrane and other organelles manage the cell processes to transport materials into and out of the cell to maintain homeostasis.</td>
</tr>
<tr>
<td></td>
<td>CK 1.3</td>
<td>compare and contrast matter and energy transformations associated with the processes of photosynthesis and cellular respiration.</td>
</tr>
<tr>
<td></td>
<td>CK 2.1</td>
<td>analyse how organ systems work together to maintain homeostasis.</td>
</tr>
<tr>
<td></td>
<td>CK 2.2</td>
<td>examine how the human circulatory system helps maintain homeostasis.</td>
</tr>
<tr>
<td></td>
<td>CK 2.3</td>
<td>examine how the human respiratory system helps maintain homeostasis.</td>
</tr>
<tr>
<td></td>
<td>CK 2.4</td>
<td>examine how the human digestive system helps maintain homeostasis.</td>
</tr>
<tr>
<td></td>
<td>CK 2.5</td>
<td>examine how the excretory system helps maintain homeostasis.</td>
</tr>
<tr>
<td></td>
<td>CK 2.6</td>
<td>examine how the immune system helps maintain homeostasis.</td>
</tr>
<tr>
<td></td>
<td>CK 2.7</td>
<td>examine how the nervous system helps maintain homeostasis.</td>
</tr>
<tr>
<td></td>
<td>CK 2.8</td>
<td>examine how the endocrine system helps maintain homeostasis.</td>
</tr>
<tr>
<td></td>
<td>CK 3</td>
<td>analyse the impact of infectious, genetic, and environmental diseases on the homeostasis of the system and the organism as a whole.</td>
</tr>
</tbody>
</table>
Biology 521A Course Overview

Taxonomy Table

Table 8 shows where BIO521A outcomes sit within Bloom’s Taxonomy. This should serve as a guide to the depth and breadth to which outcomes are addressed. Refer to page 10 and page 11 for descriptions of the Cognitive Process and Knowledge Dimensions. An SCO that appears more than once in this taxonomy table has multiple assessable targets.

Table 8. Bloom’s Taxonomy Table for BIO521A

<table>
<thead>
<tr>
<th>Knowledge Dimension</th>
<th>Cognitive Process Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Remembering</td>
</tr>
<tr>
<td>Factual</td>
<td></td>
</tr>
<tr>
<td>Conceptual</td>
<td>CK1.1, CK1.2, CK1.3</td>
</tr>
<tr>
<td>Procedural</td>
<td>PK1, PK2, PK3, PK6</td>
</tr>
<tr>
<td>Metacognitive</td>
<td></td>
</tr>
</tbody>
</table>

Verb Chart

Table 9 below will provide guidance as to the intended cognitive process that is associated with each verb in the context of the guide. It is important to note that some verbs could easily appear in different cognitive process levels, but have been placed as indicated because of the nature of the task(s).

Table 9. Verb Chart for BIO521A

<table>
<thead>
<tr>
<th>Verb</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Remembering</td>
<td>Understanding</td>
<td>Applying</td>
</tr>
<tr>
<td>define</td>
<td>compare</td>
<td>apply</td>
<td>argue</td>
</tr>
<tr>
<td>trace</td>
<td>contrast</td>
<td>calculate</td>
<td>debate</td>
</tr>
<tr>
<td>demonstrate</td>
<td>communicate</td>
<td>assess</td>
<td>evaluate</td>
</tr>
<tr>
<td>describe</td>
<td>distinguish</td>
<td>examine</td>
<td>propose</td>
</tr>
<tr>
<td>explain</td>
<td>estimate</td>
<td>identify</td>
<td>support</td>
</tr>
<tr>
<td>interpret</td>
<td>illustrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>understand</td>
<td>manipulate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>use</td>
<td>select</td>
<td></td>
<td></td>
</tr>
<tr>
<td>apply</td>
<td>use</td>
<td>argue</td>
<td>debate</td>
</tr>
<tr>
<td>analyse</td>
<td>use</td>
<td>evaluate</td>
<td>support</td>
</tr>
<tr>
<td>examine</td>
<td>use</td>
<td>propose</td>
<td></td>
</tr>
<tr>
<td>identify</td>
<td></td>
<td>support</td>
<td></td>
</tr>
<tr>
<td>argue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>debate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>propose</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Specifications (TOS)

A table of specifications (Table 10) describes the relative weighting of each unit or cluster of outcomes within a scientific literacy foundation. While the primary purpose of a TOS is to designate the cognitive demands for summative assessments, it can also be used to provide insight when planning instruction and other forms of assessment. An SCO that appears more than once in this taxonomy table has multiple assessable targets.

Table 10. Table of Specification for BIO521A

<table>
<thead>
<tr>
<th>Foundation/GCO</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Weight of GCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature of Science; Decisions and Perspectives</td>
<td>NoS1</td>
<td></td>
<td>DP1</td>
<td>10%</td>
</tr>
<tr>
<td>Procedural Knowledge</td>
<td>PK1</td>
<td></td>
<td></td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>PK2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PK3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PK4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PK5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PK6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content Knowledge</td>
<td>CK1.1</td>
<td></td>
<td></td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>CK1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CK1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CK2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CK2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CK2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CK2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CK2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CK2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CK2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CK2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CK3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Specific Curriculum Outcomes (SCOs)

NATURE OF SCIENCE

Learners are expected to ...

analyse the development of a technology related to the diagnosis or treatment of a disease.

Achievement Indicators

Learners who have achieved this outcome should be able to ...

a. analyse the design and function of a technology using scientific principles;
b. describe examples where technologies were developed based on scientific understandings;
c. analyse why and how a particular technology was developed and improved over time;
d. analyse society's influence on scientific and technological endeavours;
e. identify various constraints that result in trade-offs during the development of technologies; and
f. explain how emerging technologies revolutionized thinking in the scientific community.

Cognitive Process Dimension

<table>
<thead>
<tr>
<th>NoS 1</th>
<th>Cognitive Process Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Remembering</td>
</tr>
<tr>
<td></td>
<td>Factual</td>
</tr>
</tbody>
</table>

Knowledge Dimension

<table>
<thead>
<tr>
<th>NoS 1</th>
<th>Knowledge Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factual</td>
</tr>
</tbody>
</table>

Essential Graduation Competencies

- Citizenship
- Communication
- Critical Thinking
- Technological Fluency
- Personal-Career Development
- Creativity and Innovation
Outcome NoS1 can be addressed independently, or in conjunction with complementary outcome CK 3. Furthermore, this outcome may be addressed via a project, either individually or in groups, where students present their research in the form of a "speakers' series" or "video series" that is scheduled to occur throughout the course.

Students should analyse the design of their technology and the way it functions. To explain how their technology improved over time students should look at historic iterations of their technology to identify improvements/efficiencies resulting from the evolution of scientific knowledge. Furthermore, emerging technologies may have revolutionized how the scientific community thinks about the technology production and/or use.

Examples of technologies related to select systems are provided below as a reference.

Much of the recent success of surgery and transplants is due to research performed on, and in the creation of, immunosuppressants and anesthetics. Students may want to research a particular procedure to describe the development of medicinal drugs technology used to facilitate the process. Similarly, the use of a cardiopulmonary bypass (CPB) to temporarily take over the function of the heart and lungs during surgery is common to many procedures related to all systems.

Regarding the circulatory system, students may research the progress from bypass surgery to modern techniques (shunts, angioplasty, clot-busting drugs such as Plavix).

In consideration of the nervous system, students may investigate and discuss how specific technologies influence our ability to explore the human brain. Technologies may include MRI, EEG, CAT scan, and PET scan. Students may evaluate the consequences of damage or injury to the nervous system (e.g., stroke, spinal injury). Students may investigate the research being done on treatments for stroke and spinal injury and the potential these have for the improvement of the lifestyle of victims of these conditions. Stem cell research could be investigated with respect to Parkinson’s disease.

Students should be aware of the importance of Canadian researchers Frederick Banting and Charles Best in the discovery of insulin and the control of diabetes. Furthermore, students may want to research methods of the measurement of blood sugar and delivery of insulin (from the past to present-day insulin pumps). Students may survey information concerning the influence of anesthetics, prescription drugs (e.g., OxyContin, Valium, Ritalin), illegal drugs (e.g., marijuana, ecstasy, cocaine), and legalized drugs (e.g., alcohol, nicotine, caffeine) on the functioning of the nervous and endocrine systems, and the relationship of drugs to addiction theory (e.g., nicotine, OxyContin, morphine, LSD). Students may compare the relative physiological and societal impacts of chemical and drug use on adult development and fetal development.

Regarding the excretory system, students can analyse the development of technology to treat kidney and urological diseases such as kidney failure, kidney stones, and bladder cancer.

Development of technologies related to the immune system is of global concern. Students can focus their research on vaccine technologies by investigating how vaccines make use of the workings of the immune system, and how the technologies and the procedures for their development have evolved over time. Alternatively, students may choose technologies used to treat a specific immune disease such as Hodgkin’s.
Specific Curriculum Outcomes (SCOs)

DECISIONS AND PERSPECTIVES

Learners are expected to...

construct arguments to support a decision or judgment, using examples and evidence and recognising various perspectives.

Achievement Indicators

Learners who have achieved this outcome should be able to...

a. identify multiple perspectives that influence a science-related decision or issue;

b. debate the merits of funding specific scientific or technological endeavours and not others;

c. propose a course of action on social issues related to science and technology, taking into account an array of perspectives, including that of sustainability;

d. distinguish between questions that can be answered by science and those that cannot, and between problems that can be solved by technology and those that cannot; and

e. propose alternative solutions to a given practical problem, identify the potential strengths and weaknesses of each, and select one as the basis for a plan.
Elaborations

This outcome is central to science, as it touches on all components of the nature of science — how and what we know about the natural/physical world. Argumentation is integral to science being a dynamic, evidence-based human endeavour that continuously toys with the interplay between inductive and deductive reasoning.

Argumentation is evaluative in nature. It requires a deep understanding of the task that is being analysed, followed by a decision (claim) to be made that is tied (reasoning) to supporting evidence. In the scientific realm, argumentation is often used in the discussion section of reports to justify the conclusion in relation to the experimental objective. In broader society, argumentation is informed by scientific knowledge used to make societal decisions that have moral, ethical, and cultural implications.

The intent of specific curriculum outcome DP 1 is to engage students in argumentation involving questions that cannot be answered by science alone. Rather, science is used to inform many societal decisions. The following questions/scenarios provide contexts that may be used to engage students in specific curriculum outcome DP 1.

- Engage students in a case study related to organ transplantation, so they can construct an argument to defend a decision that requires identifying multiple perspectives that influence a science-related decision or issue. For example, these perspectives could include the difficult decisions that must be made to determine the recipient of an available organ for transplantation, the decision to make organ donation “opt out” versus “opt in”, and the decision to make organ sales illegal.
- Should technologies be developed and used to maintain, prolong, sustain, or terminate life?
- Debate the merits of using drugs for treatments of nervous disorders in light of their long-term side effects. Questions for discussion could also include the following: how does Valium affect the nervous system? (a question which can be answered by science); and how should society address the unlawful use of drugs such as OxyContin? (a question that cannot be answered by science)
- Should society play a more proactive role in promoting the improvement of diets and the prevention of diseases, or a more reactive role in the treatment of diseases?
- Students might be asked to investigate provincial and community standards on smoking/vaping in public places and on tobacco advertising. Debates/discussions may involve a discussion of the rights of the smoker versus the non-smoker; the issue of exposure to secondhand smoke; why smoking/vaping remains an issue among youth, particularly among young women; or whether high schools should provide a smoking/vaping area for their students.
- The media inundates the public with information on fad diets. Students can evaluate how nutritional deficiency (e.g., starvation diets, bulimia, anorexia nervosa) can adversely affect the dynamic equilibrium. Students could be asked to investigate the physiological basis of these diets (e.g., high protein, high carbohydrate, low fat), their safety, and their effectiveness. These investigations could include more drastic weight loss measures that involve anatomical operations such as stomach stapling or removal of a portion of the small intestine.
- Students could research and debate the safety and necessity of food additives, food irradiation, and other technologies used to improve the shelf life or the attractiveness of food products; examine the relative value of the use of processed versus unprocessed foods; examine the use of pesticides on food crops; examine the necessity of techniques used only to make food more visually appealing to the consumer; discuss the question of where our food comes from; or examine the potential of the inadvertent introduction of foreign organisms to an ecosystem through the importation of food.

For more information on the process of constructing argument, please refer to specific curriculum outcome PK 4, which addresses argumentation as it relates to evaluating scientific phenomena.
Specific Curriculum Outcomes (SCOs)

PROCEDURAL KNOWLEDGE

Learners are expected to ...

apply knowledge and understanding of safe laboratory protocols and procedures.

Achievement Indicators

Learners who have achieved this outcome should be able to ...

a interpret Workplace Hazardous Materials Information System 2015 (WHMIS 2015) pictograms and labels;

b ensure the safety of self and others by understanding the general safety protocols, procedures, and hazards;

c understand the safety protocols, procedures, and hazards specific to the activity being performed to ensure the safety of self and others; and

d apply appropriate protocols and procedures to acquire, use, and dispose of materials and equipment safely.
Students are expected to know their roles and responsibilities, the generic science safety guidelines, and the safety protocols and procedures specific to the science activity as outlined at the beginning of the activity.

Considering the importance of safety in science activities, assessment of this outcome should be frequent and triangulated (observation, conversation, product). This outcome contains a blend of knowing and doing; consequently, assessment should incorporate a variety of assessment techniques, some of which must incorporate performance assessment where students can demonstrate their knowledge and understanding through application.

Prior to engaging in any laboratory activities, students should be provided with generic science safety guidelines. These guidelines can be introduced in a variety of creative ways to encourage thoughtful discussion. Students could engage in co-construction of criteria to relate to the questions, "What matters, what counts, and what is important for a safer science laboratory?" To assist with this process, a series of questions can be created to catalyse student thoughts on the various aspects of safety in the science laboratory. Furthermore, safety concerns and procedures specific to an activity should be addressed at the beginning of each activity.
Learners are expected to...
apply appropriate techniques, procedures, and technologies for collecting and analysing data to solve problems.

Achievement Indicators

Learners who have achieved this outcome should be able to...

a. use appropriate techniques for observation, data collection, and analysis;
b. use appropriate data collection tools, including data loggers, for data collection;
c. use appropriate data analysis tools, including spreadsheets, for data analysis; and
d. communicate appropriate techniques and procedures needed to investigate scientific phenomena and solve a problem.
Elaborations

It is important that students not only know how to use technologies (ex. microscope, data logger, scalpel, spreadsheet) and techniques (ex. observation, sampling, analysis, anatomical dissection) that are common to science but are also able to apply and communicate appropriate techniques, procedures, and technologies specific to the topic being investigated in order to solve problems. Students must attain a level of understanding that allows them to act flexibly with the procedural knowledge that they acquire.

The tools, techniques, and procedures expected of students are those found and performed in the common core laboratory activities identified below.

Common Core Laboratory:

Lab 1: Factors Affecting Enzyme Activity
Lab 2: Microscopy (depth of field, field of view, and estimating specimen size)
Lab 3: Osmosis (e.g., red onion cell lab, potato and sugar solutions)
Lab 4: Photosynthesis/Cellular Respiration
Lab 5: Human Physiology (e.g., heart rate, blood pressure, vital capacity)
Lab 6: Nervous System Carousel (sense organs and reflex arc)
Lab 7: Dissection

The depth of this outcome goes beyond understanding and use. Students are expected to apply (and communicate) the techniques and procedures used. Consequently, the following question related to a common core lab procedure further elucidates the expectation for assessment of outcome PK 2.

Question
Describe a procedure to use a microscope to estimate the specimen size of an amoeba. Assume that the field of view of the scanning objective is 4000 μm (40x total magnification), and the low and high-power lens have a total magnification of 100x and 400x, respectively.

Answer Details
It is expected that the students would use the coarse adjustment knob to focus the image of an amoeba in the centre of the field of view. They should then proceed to describe that they would continually switch to higher power lenses until they have the highest-power lens that would allow the specimen to fit entirely in the field of view. Students would be expected to calculate the new field of view width based on the magnification of the ocular/objective lens and determine the specimen size by multiplying the calculated field of view by the proportion of the field of view that is occupied by the specimen.

Please note: For efficiency purposes, outcome PK 5 may be addressed by incorporating experimental design in any of the common core laboratories identified above.
Specific Curriculum Outcomes (SCOs)

PROCEDURAL KNOWLEDGE

<table>
<thead>
<tr>
<th>PK 3</th>
<th>Cognitive Process Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Remembering</td>
</tr>
<tr>
<td>Factual</td>
<td></td>
</tr>
<tr>
<td>Conceptual</td>
<td></td>
</tr>
<tr>
<td>Procedural</td>
<td></td>
</tr>
<tr>
<td>Metacognitive</td>
<td></td>
</tr>
</tbody>
</table>

Learners are expected to ...

use uncertainty in data measurement and data processing.

Achievement Indicators

Learners who have achieved this outcome should be able to ...

- a. understand random and systematic error and recognise their sources;
- b. distinguish between accuracy and precision;
- c. identify the error associated with measured values (± or % range);
- d. identify quantities, both implicit and explicit, required to solve a problem;
- e. manipulate subject-specific algebraic expressions to isolate any variable; and
- f. estimate and calculate an unknown quantity using known quantities.
Students should understand that uncertainty exists with all measured quantities, and the sources of error fall into one of two categories: random or systematic. Students should be able to identify sources of random and systematic error in laboratory experiments.

Random error results from the imprecision of measuring devices and leads to values measuring above or below the expected value. We often run multiple trials or use more precise equipment to mitigate random error.

Systematic error results from improper experimental setup and leads to values measuring always above or always below the expected value. Examples of systematic error would be a poorly calibrated instrument or a poorly controlled experiment. Multiple trials will not mitigate systematic error.

Evaluating the extent of scientific errors is important, since errors directly impact the quality of evidence used to support the final conclusion. Students should look for scientific errors that affect accuracy and precision. Scientific errors are accepted as an inherent part of science and reported with the results. Students should realize that scientific errors differ from mistakes. Mistakes include such things as forgetting to record data, miscalculating, spilling material, and setting up an apparatus incorrectly. In good science practice, investigations in which mistakes have occurred are discarded.

Table 11. Types of Error

<table>
<thead>
<tr>
<th>Type of Error</th>
<th>Characteristics</th>
<th>Sources of Error</th>
<th>Ways to Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic Error</td>
<td>• consistently in one direction</td>
<td>• quality of equipment</td>
<td>• improve design or equipment</td>
</tr>
<tr>
<td>(inaccuracy)</td>
<td>• due to design or skill</td>
<td>• uncalibrated equipment</td>
<td>• use a control or blind study</td>
</tr>
<tr>
<td></td>
<td>• can be eliminated</td>
<td>• failure to control variables</td>
<td>• calibrate equipment</td>
</tr>
<tr>
<td>Random Error</td>
<td>• fluctuates randomly</td>
<td>• normal fluctuation in measurements</td>
<td>• use more precise equipment</td>
</tr>
<tr>
<td>(imprecision)</td>
<td>• can be reduced but not eliminated</td>
<td>• imprecision of instruments used to measure</td>
<td>• increase number of trials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• too few measurements or samples</td>
<td>• increase number of samples</td>
</tr>
</tbody>
</table>

Accuracy and precision are often used interchangeably; however, in science they have very specific meanings. Students should understand accuracy as how close a measured value is to the expected value, whereas precision relates to how close measured values are to each other. Specifically, precision dictates the significant figures in a measured value and is represented by uncertainty values, either as absolute or percent uncertainty.

Students should identify and record the absolute/percentage uncertainty that is associated with the use of equipment for measurements when the uncertainty is provided with the equipment (e.g., temperature probe uncertainty ± 0.1 °C). Having these values will be of assistance to students when engaged in writing discussion/conclusions for laboratory experiments (links to PK 4). While the determination of uncertainty using various least count methods is a requirement in 500/600-level physical science courses, it is not an expectation that students in Biology 521A engage in the determination of uncertainty.
Specific Curriculum Outcomes (SCOs)

PROCEDURAL KNOWLEDGE

Achievement Indicators

Learners who have achieved this outcome should be able to ...

a. understand that scientific argumentation involves claim, evidence, and reasoning;
b. support a claim using evidence from experimental data and associated reasoning;
c. support a claim using concepts, models, laws, or theories and associated reasoning;
d. argue the directional impact of error on results;
e. argue which sources of error most likely had major/minor effects on results;
f. explain ways to adjust experimental procedure to mitigate uncertainty or to use controls to strengthen claims; and
g. evaluate the limitations of the evidence provided, including weaknesses in the methodology and possible sources of bias.
This outcome is central to science, as it touches on all components of the nature of science — how and what we know about the natural/physical world. Argumentation is integral to science being a dynamic, evidence-based human endeavour that continuously toys with the interplay between inductive and deductive reasoning.

Argumentation is evaluative in nature. It requires a deep understanding of the task that is being analysed, followed by a decision (claim) to be made that is tied (reasoning) to supporting evidence. Argumentation is often used in the discussion section of reports to justify the conclusion in relation to the experimental objective. Furthermore, scientific argument is used to explain the types of error in experimentation, their directional impact on results, and resulting limitations of the study.

Argumentation has been introduced to students in earlier science courses, and it has a close correlation to other subject areas that involve persuasive writing and formal debate. The components of scientific argument (claim-evidence-reasoning), and the skill of writing argument should be formally addressed. The use of exemplars and gradual release of responsibility for learning (“Instructional Strategies,” p.34) are recommended as instructional strategies. Writing frames such as the one illustrated below can be used to organize evidence and explanation as they relate to the claim. Students could be asked to complete a writing frame by deconstructing an exemplar. This process should elucidate how a writing frame is used and how to move from the frame to the completed argument.

Table 12. Claim, Reasoning, and Evidence Writing Frame Sample

<table>
<thead>
<tr>
<th>Claim</th>
<th>Reasoning</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your answer to a given question is your claim.</td>
<td>Reasoning is the bridge between your answer (claim) and the data that led you there (evidence).</td>
<td>The data (evidence) that helped you arrive at your claim is your evidence.</td>
</tr>
</tbody>
</table>

In the space provided, state your claim, define your evidence, and indicate how and/or why your evidence supports or justifies your claim. Together, your claim, evidence, and reasoning form your evidence-based argument.
Specific Curriculum Outcomes (SCOs)

PROCEDURAL KNOWLEDGE

Achievement Indicators

Learners who have achieved this outcome should be able to ...

- a. formulate relevant questions to investigate;
- b. formulate hypotheses and make informed predictions;
- c. identify and control major variables;
- d. select appropriate procedures/techniques to vary the independent variable; and
- e. select appropriate sampling procedures/techniques for the dependant variable.

Cognitive Process Dimension

<table>
<thead>
<tr>
<th>PK 5</th>
<th>Cognitive Process Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Remembering</td>
</tr>
<tr>
<td>Factual</td>
<td></td>
</tr>
<tr>
<td>Conceptual</td>
<td></td>
</tr>
<tr>
<td>Procedural</td>
<td></td>
</tr>
<tr>
<td>Metacognitive</td>
<td></td>
</tr>
</tbody>
</table>

Learners are expected to ...

design or modify an experiment identifying and controlling major variables.
Elaborations

Students are expected to continue the practice of experimental design that was developed in prior science courses (see below). Although the practice and understanding of experimental design is relatively static, the scientific phenomena studied in 500/600-level courses are more complex from a content and procedural knowledge perspective as compared with earlier grades. Consequently, the depth of knowledge required to design an experiment in 500/600-level courses will inherently be more complex as well.

Depending on the phenomenon being studied, teachers can decide if students will engage in designing an entire experimental procedure. Furthermore, teachers may choose instead to have students engaged in designing, or modifying the design of, a component of a study. For example, an experimental procedure may already have been used by students to measure atmospheric carbon dioxide levels resulting from photosynthesis/cellular respiration of a particular plant. In consideration of the procedure used, the students can decide on a question they wish to investigate and then modify the original procedure to allow for an investigation pertaining to the new inquiry. Alternatively, students could be asked to examine an experimental procedure, and to recommend modifications to the procedure that would mitigate the effects of confounding variables that may have been originally overlooked.

During intermediate grades, students were introduced to experimental design and practised generating descriptive and causal questions, identifying variables, writing and testing hypotheses, and identifying scientific errors (specifically, bias and lack of control of variables). In addition to designing an investigation, students in Science 421A were expected to analyse and evaluate the design of experiments more deeply. Criteria used to evaluate science investigations include reproducibility, repeatability, reliability, accuracy, and precision.

Throughout their studies of science, students should have been formally introduced to the following terms used in experimental design and would have be made aware that a fundamental principle of science is that results produced by an investigation are repeatable and reproducible.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatable</td>
<td>yields consistent (reliable) results when performed by the same individual using the same equipment or apparatus</td>
</tr>
<tr>
<td>Reproducible</td>
<td>yields consistent (reliable) results when performed by another investigator using the same equipment or apparatus</td>
</tr>
<tr>
<td>Independent Variable</td>
<td>manipulated (altered) variable that causes a change in another variable. This is the only variable to be manipulated by the experimenter.</td>
</tr>
<tr>
<td>Dependent Variable</td>
<td>responding (measured) variable that is affected by the independent variable. The experimenter observes or measures any changes that occur.</td>
</tr>
<tr>
<td>Controlled Variable</td>
<td>variable that is neither altered nor measured, rather is maintained constant. To be certain that the independent variable is causing the observed effect on the dependent variable, all other variables must be controlled or kept constant.</td>
</tr>
<tr>
<td>Confounding variable</td>
<td>variable that is not properly controlled and can inadvertently affect the results</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>a tentative, testable explanation to answer a causal question. It is a misconception that hypotheses are guesses. A hypothesis is accompanied by a prediction statement.</td>
</tr>
<tr>
<td>Prediction</td>
<td>statement describing what is expected to happen during the test if the hypothesis is correct. The prediction statement includes the direction of change (e.g., increase or decrease).</td>
</tr>
</tbody>
</table>
Achievement Indicators

Learners who have achieved this outcome should be able to:

- **a.** use appropriate language conventions to effectively communicate in research papers and experimental reports;
- **b.** use appropriate numeric and symbolic modes of representation to report data and associated units of measure;
- **c.** use a consistent style guide (MLA, APA, ACS, APS, Chicago, etc.) for referencing the works of others; and
- **d.** use a consistent style guide (MLA, APA, ACS, APS, Chicago, etc.) for formatting research papers and experiment reports and their components (tables, charts, lists, graphs, etc.).

PK 6

<table>
<thead>
<tr>
<th>Knowledge Dimension</th>
<th>PK 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual</td>
<td></td>
</tr>
<tr>
<td>Conceptual</td>
<td></td>
</tr>
<tr>
<td>Procedural</td>
<td></td>
</tr>
<tr>
<td>Metacognitive</td>
<td></td>
</tr>
</tbody>
</table>

Cognitive Process Dimension

- **Remembering**
- **Understanding**
- **Applying**
- **Analysing**
- **Evaluating**
- **Creating**

Learners are expected to...

- use appropriate language and formatting conventions to effectively communicate plans, procedures, data, results, and conclusions of research and experimentation.
Elaborations

The organization and style of scientific writing emphasize clarity, objectivity, and the use of specialized technical language to ensure that the message communicated is clear and unambiguous. Implied in “effectively communicate” in PK 6 is the quality or clarity of writing based on criteria such as word choice, organization, fluency, and mechanics.

To develop proficiency with technical writing, students can be provided with opportunities to practise skills specific to individual sections of lab reports (e.g., writing a sequential procedure, recording observations, interpreting patterns and trends in graphed data, and formulating a discussion) before completing a whole report.

Students should demonstrate proficiency using informational text features and technical writing conventions by creating purposeful tables, graphs, models, and diagrams. Students should also clearly communicate the nature of relationships within data, devices, apparatuses, or scientific concepts.

For consistency and clarity of expectations, a particular style guide should be adopted by your science department and applied across all science courses. Once students become proficient in applying the detail necessary to adhere to a particular style, they should have little difficulty applying alternate styles to written work. As multiple style guides are employed between, and within, each science discipline, it is important to note that the consistent use of a style guide is important. The type of style is of nominal importance. The same style guide should be further used to explicitly teach students how to avoid plagiarizing the work of others.

The use of exemplars and gradual release of responsibility for learning ("Instructional Strategies" p.34) to elucidate appropriate language and style conventions are recommended as instructional strategies.
Specific Curriculum Outcomes (SCOs)

CONTENT KNOWLEDGE

CK 1.1

Learners are expected to ...

describe the structure and function of important biochemical compounds (water, carbohydrates, lipids, and proteins).

Achievement Indicators

Learners who have achieved this outcome should be able to ...

- a. describe the structure, properties, and function of the water molecule in relation to living systems;
- b. describe the basic structure and function of carbohydrates, lipids, and proteins;
- c. describe the basic monomer structure involved in the synthesis of carbohydrate, lipid, and protein polymers;
- d. illustrate how polymers are created via dehydration synthesis/condensation from monomers; and
- e. illustrate how polymers are broken down via hydrolysis.
As an introduction to the various biochemical compounds, teachers may provide students with a list of biochemical names or product labels and ask students to identify those that are familiar and describe what they know about the functioning of the compounds identified.

It is not the intent of CK 1.1 to have students recognise the name and structure of specific macromolecules (e.g., different protein names and chemical structures); however, students should know the basic structure of a carbohydrate, lipid, and protein and the associated monomer. They should be able to recognise which bonds are formed/broken during dehydration synthesis and hydrolysis. Hydrolysis is the breaking apart of larger biochemical molecules by the addition of the parts of a water molecule, H⁺ and OH⁻. Dehydration synthesis or condensation reactions refers to the removal of a water molecule during the joining of two molecules, such as amino acids to form proteins or simple sugars to form polysaccharides.

Please note: The structure and function of nucleic acids will be addressed in Biology 621A.
Specific Curriculum Outcomes (SCOs)

CONTENT KNOWLEDGE

Learners are expected to...

describe how the cell membrane and other organelles manage the cell processes to transport materials into and out of the cell to maintain homeostasis.

Achievement Indicators

Learners who have achieved this outcome should be able to...

a. explain how the structure of the cell membrane is related to its function (fluid-mosaic model);
b. explain how materials are able to move into and out of cells through a selectively permeable membrane;
c. define the terms diffusion, osmosis, facilitated diffusion, hypotonic, hypertonic, and isotonic;
d. describe the effects of hypotonic, isotonic, and hypertonic solutions on animal and plant cells;
e. define the terms protein pump, endocytosis (pinocytosis, phagocytosis), and exocytosis;
f. describe the effects of protein pump, endocytosis (pinocytosis, phagocytosis), and exocytosis on animal and plant cells; and
g. compare and contrast passive transport with active transport.

CK 1.2
Cognitive Process Dimension

<table>
<thead>
<tr>
<th>Knowledge Dimension</th>
<th>Remembering</th>
<th>Understanding</th>
<th>Applying</th>
<th>Analysing</th>
<th>Evaluating</th>
<th>Creating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metacognitive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cognitive Process Dimension

Remembering

Understanding

Applying

Analysing

Evaluating

Creating

Knowledge Dimension

Factual

Conceptual

Procedural

Metacognitive

Content Knowledge
The processes of osmosis and diffusion can be easily illustrated in the classroom by setting up an experiment in which concentration gradients exist (links to PK 2). One example involves placing massed potato cubes in solutions of varying sugar concentration and determining if there is a change in mass over a specified amount of time. Students could then determine the isotonic concentration from the intercept of the graph of concentration versus percentage change in mass. Another example involves soaking an egg in vinegar overnight for the purpose of removing the shell while maintaining the membrane intact. The egg should be dried (with a towel), massed, and then placed in each of the following solutions for periods of eight minutes: pure distilled water, distilled water with 5% salt, distilled water with 10% salt, and distilled water with 20% salt. The egg must be dried and massed after eight minutes in each of the solutions. The students can then tabulate and explain the results.

Creation of a model cell membrane by students is an effective method, as well, to show passive, yet selective, transport through a membrane. Dialysis tubing or a sandwich bag can be utilized to represent the cell membrane. This example would use starch, sugar, and water located inside the tubing, and iodine and water located outside of the tubing.

Students can explore the concept of osmosis and the influence of hypotonic, hypertonic, and isotonic solutions by discussing how foods are preserved (sugar and salt); why plants may be adversely affected by too much fertilizer; why vegetables are sprayed with water at the local grocery stores; and how intravenous fluids are used in medical situations.
Specific Curriculum Outcomes (SCOs)

CONTENT KNOWLEDGE

CK 1.3

Learners are expected to ...

compare and contrast matter and energy transformations associated with the processes of photosynthesis and cellular respiration.

Achievement Indicators

Learners who have achieved this outcome should be able to ...

a. define ADP and ATP and briefly describe how they are involved in the energy cycle (ADP+P+Energy <=> ATP);

b. explain the importance of the processes of photosynthesis and aerobic cellular respiration for individual organisms;

c. demonstrate, using equations, that photosynthesis and aerobic cellular respiration are complementary processes;

d. explain the importance/impact of the processes of photosynthesis and aerobic respiration on a global basis (e.g., Climate Change); and

e. define anaerobic respiration, and explain in general terms its role in industrial fermentation and muscle fatigue.
Elaborations

The emphasis of this outcome is the difference between aerobic processes and photosynthetic processes. It is not intended for students to investigate biochemical processes (glycolysis, Krebs cycle, electron transport chain, and light and dark reactions). This is a good opportunity to have students revisit from previous grades the organelles responsible for these energy-conversion processes (chloroplast, mitochondria).

Teachers should explain that photosynthetic organisms, using light as an energy source, remove CO_2, water, and other materials from their environment in order to assemble more complex organic compounds and release, as a byproduct, oxygen gas. Teachers should also explain that cellular respiration is a chemical process utilized by all organisms to extract energy from organic molecules. These organic substances are broken down into the components of CO_2 and water, and the energy released is utilized by the organism for its own purposes or released into the environment.

An analysis of the role of photosynthesis as the biological basis of the primary industries of agriculture, forestry, and fisheries would be appropriate. Students may also suggest ways that humans are manipulating the natural processes of photosynthesis and respiration through their activities (such as selective breeding to increase productivity), and discuss the potential ramifications of these activities. This discussion may lead to how the human population intentionally or unintentionally impacts the environment. For example, deforestation releases tremendous quantities of carbon into the atmosphere and destroys a carbon sink — thus having a compound effect on our ability to counteract climate change.

Students should be aware that some microorganisms are capable of metabolizing without the presence of oxygen (anaerobic respiration), and that these organisms are used in fermentation. Connections should also be made between muscle fatigue and oxygen deprivation with respect to anaerobic respiration.
CONTENT KNOWLEDGE

Learners are expected to ...

analyse how organ systems work together to maintain homeostasis.

Achievement Indicators

Learners who have achieved this outcome should be able to ...

a. define homeostasis, including the concept of dynamic equilibrium;

b. describe what cells need to survive (O₂, nutrients) and what waste that must be removed (metabolic waste, CO₂);

c. explain the importance of fitness and nutrition in maintaining homeostasis; and

d. analyse the interdependence of organ systems and how they may react in response to a disruption (stimuli).
In this outcome, students should be given the opportunity to study a variety of factors that affect the homeostasis of an organism. Through this, they will begin to appreciate the complexity of the mechanisms involved in the maintenance of homeostasis. Alternatively, students can be provided with a visual containing a high-level explanation of how various body systems contribute to the maintenance of homeostasis. Once provided they can discuss how each system interacts with given stimuli (fight or flight response, smell of pizza, cold temperature, etc.).

Teachers should establish a scenario that could be used to show the interdependence of body systems and their importance in the maintenance of homeostasis. As students begin to learn more about the functioning of the various body systems, the interactions among these systems will become increasingly elaborate. Once the functioning of the nervous and endocrine system is addressed, a more complete description of how an organism reacts to a stimulus can be described (from sensing to the response to establish equilibrium). Students could brainstorm responses to the following questions: What happens to your body as you run? Why? Answers generated by students may include increased heart rate; breathing more quickly and deeply; thirst; feeling sweaty, hot, and tired; or sore muscles. Students should suggest why the body would respond in each of these ways, and what body systems would be involved. For example, they might say that an increased heart rate (circulatory system) increases the distribution of O₂/CO₂ (respiratory system) and sugar (digestive system) to and from the tissues. Another scenario could be to investigate how illness (common cold) disrupts homeostasis to create specific symptoms.

Temperature regulation is only one of a number of the body’s homeostatic mechanisms. Investigating the importance of temperature regulation is a good introduction to the body’s feedback mechanisms. Some organisms incorporate behaviours to help control temperature. For example, lions move to shady areas during midday sun, and desert animals are primarily nocturnal. Physiologically, temperature control can be accomplished through the responses of the circulatory system. Vasoconstriction and vasodilation can assist in this process.

Students could investigate the terms healthy nutrition and fitness. Students could suggest what parts of their bodies or what body systems are involved in the achievement of health and fitness. For example, students may suggest that a balanced diet is important and propose a connection with the digestive system to break down the food and the circulatory system to distribute nutrients. This activity provides another opportunity to have students establish the interrelationships within the body and how these systems work together to maintain homeostasis.

Please note: This outcome should continuously be revisited in conjunction with all CK outcomes.
Specific Curriculum Outcomes (SCOs)

CONTENT KNOWLEDGE

Learners are expected to ...

examine how the human circulatory system helps maintain homeostasis.

Achievement Indicators

Learners who have achieved this outcome should be able to ...

a. identify the main components of the human heart and explain the role of each;

b. trace the flow of blood through the heart and describe the pulmonary and systemic pathways;

c. explain how the SA node and AV node control the heartbeat;

d. describe the structure of an artery, vein, and capillary, and relate these structures to their functions in blood circulation;

e. describe the meaning of systolic and diastolic blood pressure and their values as they relate to healthy blood pressure;

f. identify the main components of blood and explain the role of each; and

g. analyse how the circulatory system contributes to the maintenance of dynamic equilibrium through its role in the transport of heat, energy, and matter.
Elaborations

All organisms have some mechanism to circulate materials and dispose of wastes. Larger organisms require specialized transport systems in order to ensure that all cells have access to materials required for survival and waste removal.

In terms of depth of treatment, the following items are to be addressed with regard to the components of the heart: atria, ventricles, valves (bicuspid, tricuspid, semilunar), aorta, pulmonary vein, pulmonary artery, and septum. The main components of blood to be addressed include erythrocytes, leukocytes, platelets, and plasma.

Teachers may consider engaging students in specific curriculum outcome PK 2 by having students use a microscope to examine prepared slides of human blood and observe the contrasting morphologies, the relative abundance of the cellular components (red and white blood cells), and the structure of an artery, vein, and capillary. Furthermore, students could observe a heart by using preserved specimens, models, or computer simulations to help them clarify how the structure of the heart allows it to function as a mechanical pump.

To engage students in systems thinking (electrical, mechanical, biochemical), data from the use of datalogging equipment such as an EKG sensor can be used in conjunction with knowledge of the components of the circulatory system. During this process, students will have the opportunity to observe and appreciate how various structures control the direction of blood flow through the heart. Students can use a variety of ways to demonstrate this knowledge. One such method is to have student groups create a kinulation (kinesthetic simulation), where select students play a role of a circulatory system component while other students move through the system as “blood.”
Specific Curriculum Outcomes (SCOs)

CONTENT KNOWLEDGE

Cognitive Process Dimension

<table>
<thead>
<tr>
<th>Knowledge Dimension</th>
<th>Remembering</th>
<th>Understanding</th>
<th>Applying</th>
<th>Analysing</th>
<th>Evaluating</th>
<th>Creating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metacognitive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learners are expected to...

examine how the human respiratory system helps maintain homeostasis.

Achievement Indicators

Learners who have achieved this outcome should be able to...

a explain the characteristics of a respiratory surface as it relates to gas exchange;
b identify and state the function of the parts of the respiratory system;
c explain the mechanics of inhalation/exhalation;
d describe how respiratory gasses are transported in the blood (CO$_2$ - dissolved/bicarbonate/hemoglobin; O$_2$ - hemoglobin);
e explain the terms vital capacity, tidal volume, inspiratory reserve volume, expiratory reserve volume, and residual volume; and
f analyse how the respiratory system contributes to the maintenance of dynamic equilibrium through its role in gas exchange.
Elaborations

Students should be reminded that humans require a respiratory surface for gas exchange and for the provision of \(\text{O}_2 \) for respiration at the cellular level. The respiratory surface must be moist, thin-walled, large enough for efficient gas exchange, and in contact with a transport system. Students should realize that moisture is required to allow gas dissolution and cross-membrane transport. A large surface area aids in efficiency and accounts for the advantage of the mammalian lung.

Students should investigate the mechanics of inhalation/exhalation and the regulation of the breathing cycle. They may construct a model to illustrate the functioning of the diaphragm in respiration. A popular design involves the use of a bell jar, with balloons to represent lungs and a membrane to represent the diaphragm.

Students should identify and state the function of the following components of the respiration system: nasal cavity, pharynx, epiglottis, trachea, larynx, bronchi, bronchioles, alveoli, diaphragm, intercostal muscle, ribs, and sternum.
Specific Curriculum Outcomes (SCOs)

CONTENT KNOWLEDGE

Learners are expected to ...

examine how the human digestive system helps maintain homeostasis.

Achievement Indicators

Learners who have achieved this outcome should be able to ...

a describe the purpose and functioning of the digestive system;
b define mechanical and chemical digestion and explain the relationship between them;
c identify the major organs and glands of digestion and describe their roles in the digestive process;
d trace the pathway of food through the digestive tract and explain the efficiency of its structures (e.g., villi);
e identify the general role and activity of enzymes, secretions, and microbiome in the digestive tract; and
f analyse how the digestive system contributes to the maintenance of dynamic equilibrium through its role in breaking down food into nutrients.
Elaborations

Students should be aware that the purpose of digestion is to convert large molecules into smaller ones capable of being utilized by the cell. Students should distinguish between mechanical digestion (physical change) and chemical digestion (chemical change) via the action of enzymes. Students should understand that enzymes catalyse chemical reactions by binding to specific substrate(s) in order to produce the desired product(s). Students do not need to know the specific chemical formulas, only the basic structures of carbohydrates, lipids, and proteins (links to CK 1.1).

Students should describe the function of the following organs or glands in the digestive process: oral cavity, salivary gland, esophagus, stomach, small intestine, liver, pancreas, gallbladder, large intestine, rectum, and anus. An effective method for students to do this is through the use of a chart (or body diagram) that places the organs in the order that they are found in the digestive pathway with information related to associated glands, type of digestion, and enzymes/secretions involved. It is important to have students distinguish between the digestive organs through which food travels (e.g., stomach, small intestine, oral cavity) and the accessory digestive organs that assist with digestion via secretions (e.g., liver, gallbladder, pancreas, salivary glands).

Students could be provided with the opportunity to observe the principal features of the digestive system by utilizing models, computer simulations, or dissection, and to identify the structures through the use of drawings or photographs. To emphasize the unifying theme of form and function, teachers can relate the structure of intestinal villi (increased surface area for absorption) to the processes of active transport (links to CK 1.2), where basic nutrients from the intestines are carried across the cell membrane into the blood vessels.

Please note: Nutritional requirements and health are addressed in CK 2.1.
Specific Curriculum Outcomes (SCOs)

CONTENT KNOWLEDGE

<table>
<thead>
<tr>
<th>CK 2.5</th>
<th>Cognitive Process Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Remembering</td>
</tr>
<tr>
<td>Factual</td>
<td></td>
</tr>
<tr>
<td>Conceptual</td>
<td></td>
</tr>
<tr>
<td>Procedural</td>
<td></td>
</tr>
<tr>
<td>Metacognitive</td>
<td></td>
</tr>
</tbody>
</table>

Learners are expected to ...

examine how the excretory system helps maintain homeostasis.

Achievement Indicators

Learners who have achieved this outcome should be able to ...

a. explain the role of the lungs, skin, and liver in excretion;

b. identify and describe the main structures of the human urinary system, including the kidney (cortex, medulla, and pelvis), ureter, bladder, and urethra;

c. explain the role of the kidney as an excretory organ in removing metabolic wastes from the body;

d. identify and explain the function of the glomerulus and the parts of a nephron (Bowman’s capsule, loop of Henle, tubules - proximal and distal, collecting duct); and

e. analyse how the excretory system contributes to the maintenance of dynamic equilibrium through its role in regulating the volume and composition of body fluid.
Elaborations

Excretory systems maintain homeostasis with respect to water, salt, and metabolite concentrations within the blood. Students may oversimplify the excretory system by thinking it is all about the kidney (which removes metabolic wastes). Several other organs involved in the excretory system are often overlooked. Students should briefly overview the function of the lungs (which remove CO\textsubscript{2}), the skin (which removes heat, mineral salts, and urea), and the liver (which removes metabolic wastes and creates bile and urea) as vital organs that play a major role in the excretory system.

Students should be provided with the opportunity to observe the principal features of the human excretory system utilizing models, dissection, or computer simulations, and to identify the structures through the use of drawings or photographs. Diagrams or charts could be used to illustrate the structure of the nephron and to emphasize its role as the working unit of the kidney. Microscopic analysis of a kidney cortex section could provide some visual confirmation of the structural components of the kidney.

Students will recognise the kidney’s structure as including the cortex, medulla, and pelvis, and will understand the filtration and selective reabsorption functions of the nephron (links to cell transport CK 1.2). Students could perform experiments to investigate simulated urine composition, perform data analysis, and summarize the role of the kidney in homeostatic regulation of pH, water, and ionic substances.
Specific Curriculum Outcomes (SCOs)

CONTENT KNOWLEDGE

Learners are expected to …

examine how the immune system helps maintain homeostasis.

Achievement Indicators

Learners who have achieved this outcome should be able to …

a. compare and contrast the types of immune response: physical and chemical barriers, the inflammatory response, and the adaptive immune system;

b. describe the role of phagocytes and lymphocytes in the immune response;

c. explain the meaning of antigen and antibody;

d. explain the mechanism of passive immunity (e.g., breastmilk) and acquired immunity (e.g., vaccines, actual exposure); and

e. analyse how the immune system contributes to the maintenance of dynamic equilibrium through its role in protecting the body from foreign invaders that cause infection, illness, and disease.
Students should compare and contrast the types of immune responses. Physical and chemical barriers such as skin, sweat, and stomach acid are non-specific. The inflammatory response and phagocytes as a general response to a foreign substance should be explained. The role of B cells (naive, memory, and plasma), T cells, and antibodies in the adaptive immune response should be summarized.

The specificity of antibodies and their role in binding/inactivation and "flagging" for phagocytes should be discussed. The application of antibodies may be discussed in terms of passive immunity (e.g., breastmilk, monoclonal antibody treatments, Sotrovimab for COVID-19, Pertuzumab for breast cancer) and biotechnology applications (e.g., pregnancy test, ELISA, Western Blot).

Students may investigate vaccine-preventable illnesses (like smallpox, tuberculosis, polio, chicken pox, etc.). In conjunction with DP 1, the social impact of infectious diseases and vaccine programs could be discussed.
Specific Curriculum Outcomes (SCOs)

CONTENT KNOWLEDGE

Learners are expected to ...

examine how the nervous system helps maintain homeostasis.

Achievement Indicators

Learners who have achieved this outcome should be able to ...

a identify the requirements necessary for a nervous response to occur, including sensory receptors (eye, ear, skin), impulse transmission (neurons), interpretation and analysis of impulses (spinal cord and brain), and effectors (muscles, glands);

b describe the function of sensory neurons, motor neurons, and interneurons;

c describe the structure of the typical neuron and explain the function of each part;

d describe the transmission of an action potential along the length of a neuron;

e describe the transmission of an impulse across a synapse and the general effects of an excitatory and inhibitory neurotransmitter involved (acetylcholine, noradrenaline, glutamate, GABA, dopamine, serotonin);

f explain the basic structure, function, and protection of the central nervous system (brain, spinal cord);

g describe the basic functions of a peripheral nervous system (autonomic – sympathetic/parasympathetic; somatic); and

h analyse how the nervous system contributes to the maintenance of dynamic equilibrium through its role in monitoring and controlling body processes.
Elaborations

Neuron Structure and Function
The study of the structure and function of neuron components should include dendrite, cell body, axon, axon terminal, and Schwann cells (myelin sheath and nodes of Ranvier). Students can observe the structure of neurons and neuromuscular junctions on prepared microscope slides in the laboratory. Students should be able to describe the role of the sodium-potassium (Na+/K+) pump as it pertains to ion distributions. Discussion of action potential should be described at a very basic level. Threshold potential causes a chain of depolarization and repolarization that ultimately creates a nerve impulse to flow the length of an axon. While action potential is beyond the scope of this outcome, students can be directed to various websites containing animations of this process, should they wish to view it in more depth. Considering the cursory treatment of action potential, the function of neurotransmitters should only be described as excitatory (depolarizing) or inhibitory (repolarizing). When the action potential reaches the axon terminal, a neurotransmitter is released, which triggers an action potential in a neighbouring neuron or a response in an effector such as a muscle or gland. Students should be provided with examples of both excitatory and inhibitory neurotransmitters and the positive and negative effects of their presence on an organism.

Cells within the nervous system require enormous amounts of energy to function. This energy is provided by the processing of glucose and the production of ATP, which requires an adequate supply of carbohydrates and oxygen. The energy is required to maintain the resting potential (operate the sodium-potassium pump) and convert chemical signals into electrical signals that travel along a nerve cell (action potential) and between individual nerve cells (synapse).

Central Nervous System
Students should explain how the nervous system is protected (skull, meninges, cerebrospinal fluid) and explain the basic structure and function of the brain (cerebrum, cerebellum, medulla oblongata, thalamus, hypothalamus, midbrain, pons, and corpus callosum). Students should understand that the basic function of the cerebrum is to sort and interpret all of the information from our senses. It is the part of the brain that makes humans different from animals because it is the centre of human consciousness. Students should also understand that the cerebrum can be divided into two hemispheres (left and right) or four lobes (frontal, parietal, temporal, occipital). For Biology 521A, it is not necessary for students to know the individual function of each hemisphere or lobe.

Peripheral Nervous System
Students can prepare a chart to visually contrast the sympathetic and parasympathetic components of the autonomic nervous system in various parts of the body (e.g., heart, digestive tract, blood vessels, bladder, bronchi, eye).
CONTENT KNOWLEDGE

Specific Curriculum Outcomes (SCOs)

CK 2.8

<table>
<thead>
<tr>
<th>Knowledge Dimension</th>
<th>Cognitive Process Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual</td>
<td>Remembering</td>
</tr>
<tr>
<td>Conceptual</td>
<td></td>
</tr>
<tr>
<td>Procedural</td>
<td></td>
</tr>
<tr>
<td>Metacognitive</td>
<td></td>
</tr>
</tbody>
</table>

Learners are expected to ...

examine how the endocrine system helps maintain homeostasis.

Achievement Indicators

Learners who have achieved this outcome should be able to ...

a. compare and contrast the mechanisms used by the nervous and endocrine systems as communication networks in the body;

b. explain the general concepts of a hormone and target cell organ in terms of hormone solubility in membranes (steroid vs. non-steroid) and location of protein receptors;

c. identify the location and function of the principal endocrine glands in the human organism;

d. identify hormones and their source glands and explain their general effects on homeostasis;

e. describe the general function of negative feedback loops and identify an example; and

f. analyse how the endocrine system contributes to the maintenance of dynamic equilibrium through its role in releasing chemical hormones from various glands.
The endocrine system of animals releases chemical hormones into the blood to be circulated. These hormones help maintain homeostasis by causing or preventing change in specific organs or tissues of the body. The endocrine system is slower in producing an effect than the nervous system; however, the effect is more sustained. It is important for students to realize that the nervous system and endocrine system work together in a coordinated fashion.

Teachers could use a series of tables to summarize information about the glands, their hormones, their targets, and their functions. Hormones that should be examined include HGH, TSH, thyroxine, melatonin, insulin, glucagon, adrenaline, ACTH, cortisol, calcitonin, and PTH. The hypersecretion and hyposecretion of a hormone could be examined (linked to CK 3).

Teachers should distinguish between both steroid and non-steroid hormones and how the cell responds to each type of hormone (solubility in cell membrane, location of receptors, end result).

Students should explore the location and function of the following glands: pituitary, hypothalamus, pineal, thyroid, parathyroid, adrenal, and pancreas (endocrine/exocrine). Please note that the ovaries and testes can be mentioned; however, these glands and associated hormones will be studied in depth in Biology 621A.

Students should be able to use flowcharts to describe representative negative feedback mechanisms in living systems. Within the discussion of the hypothalmus-pituitary complex, RF (releasing factor), pituitary hormones, and target tissues (e.g., TSH on thyroid) should be included. Students should be able to represent how glucose, thyroxin, or calcium is regulated.

Please note: Positive feedback will be described in detail in Biology 621A. For example, one topic is the role of oxytocin to illustrate a positive feedback loop in a human system (e.g., When the water breaks during labour, pressure is exerted on the cervix and an increase in uterine contractions occurs. In turn, more oxytocin is released, which then increases the contractions.)
Specific Curriculum Outcomes (SCOs)

CONTENT KNOWLEDGE

Learners who have achieved this outcome should be able to...

Achievement Indicators

Learners who have achieved this outcome should be able to ...

a. describe the signs and symptoms of the disease;
b. identify the cause of the disease (infectious, genetic, environmental);
c. analyse how the disease impacts the normal functioning of the affected system(s);
d. analyse how the disease impacts the normal functioning of the organism; and
e. describe available cures and/or treatment of symptoms.

Cognitive Process Dimension

<table>
<thead>
<tr>
<th>Knowledge Dimension</th>
<th>Cognitive Process Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual</td>
<td>Remembering, Understanding, Applying, Analysing, Evaluating, Creating</td>
</tr>
<tr>
<td>Conceptual</td>
<td>Understanding, Applying, Analysing, Evaluating, Creating</td>
</tr>
<tr>
<td>Procedural</td>
<td>Applying, Analysing, Evaluating, Creating</td>
</tr>
<tr>
<td>Metacognitive</td>
<td>Creating</td>
</tr>
</tbody>
</table>

Learners are expected to ...

analyse the impact of infectious, genetic, and environmental diseases on the homeostasis of the system and the organism as a whole.
Elaborations

This outcome can be addressed independently or in conjunction with complementary outcome NoS 1, where students must analyse the development of a technology related to the diagnosis and treatment of a disease. Furthermore, this outcome can be addressed by having students engage in a research project that gives them agency (voice and choice) over the topic and mode of presentation. The project can take on many forms, one of which is a “speakers' series” or “video series” where brief student presentations or videos are scheduled to occur throughout the duration of the course at times that may coincide with the system being studied.

Students could investigate a variety of diseases that include, but are not limited to, the following:

Circulatory System
heart attack, stroke, varicose veins, heart murmur, aneurysm, blood clots, leukemia, pulmonary edema (congestive heart failure), hypertension, atherosclerosis, and arteriosclerosis

Digestive System
cancer, Crohn’s disease, celiac disease, ulcers, gallstones, and ileitis/colitis

Respiratory System
lung cancer, pneumonia, asthma, bronchitis, emphysema, and the impact of environmental factors such as cigarette smoke, allergens (dust, mold, food), petrochemical fumes, smog, perfumes, asbestos, farmer’s lung, and vaping-associated lung injury

Excretory System
diabetes, nephritis, kidney stones, bladder infections, and kidney infections

Nervous System
multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, meningitis, and Huntington’s disease. Students may be interested in other conditions related to nervous function, such as polio, stroke, Bell's palsy, ALS, Tourette syndrome, epilepsy, or mental health disorders related to chemical imbalances (e.g., anxiety, clinical depression).

Endocrine System
pituitary dwarfism, gigantism, hyperthyroidism, hypothyroidism, and diabetes mellitus

Immune System
rheumatoid arthritis and Hodgkin’s

While the terms disease, disorder, and syndrome are often used interchangeably, they actually have a specific meanings that are unique. Although this outcome and its achievement indicators reference the term disease, students can analyse disorders and syndromes.
The development of the knowledge, skills, and attitudes required for scientific literacy can be described as a continuum with four key stages: emergent, early, transitional, and fluent. These stages are described through the lens of each of the four foundations of scientific literacy; subsequent stages build upon earlier ones. The continuum is based on cognitive developmental patterns for primary, elementary, middle, and high school years with the recognition that learning is neither linear nor mirrored between students.

Appendix A: The Scientific Continuum

<table>
<thead>
<tr>
<th>K–12 Scientific Literacy Continuum</th>
<th>Emergent</th>
<th>Early</th>
</tr>
</thead>
</table>
| Nature of Science | • Developing an understanding that we use our senses as a way of knowing
• Developing an awareness that science helps us understand the natural and material world | • Developing an awareness of the scientific community that helps us understand the natural and material world
• Developing an awareness that scientists follow a process to learn about the world |
| Procedural Knowledge | • Using their senses to learn about the natural and material world
• Asking questions
• Recording and interpreting observations
• Playing (exploring and exhibiting curiosity)
• Developing manipulative skills
• Exploring measurement
• Exploring patterns
• Exploring similarities and differences | • Exploring the scientific inquiry processes (e.g., questioning, observing, recording, analyzing, interpreting, using models)
• Exploring the importance of evidence and variables
• Investigating cause and effect
• Identifying similarities and differences
• Developing more refined understanding of measurement
• Exploring design
• Using numeric, symbolic, graphical, and linguistic modes to communicate science ideas, plans, and results |
| Content Knowledge | • Identifying characteristics of living things
• Exploring properties
• Exploring change | • Exploring science topics of personal interest
• Developing an appreciation for science and the vastness of its contribution to understanding our world |
| Decisions and Perspectives | • Learning to respect self and others
• Controlling physical interactions
• Collaborating with and listening to others | • Extending focus beyond self and immediate environment
• Becoming aware of the benefits and responsibilities associated with science and technology
• Becoming aware of personal perspectives related to science issues
• Recognizing and demonstrating respect for different perspectives |
Appendix A: The Scientific Continuum

<table>
<thead>
<tr>
<th>Transitional</th>
<th>Fluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Developing an understanding of science as a way of knowing (metacognition)</td>
<td>• Deepening understanding of science as a specific way of knowing that uses rational reasoning</td>
</tr>
<tr>
<td>• Beginning to develop an understanding of the significance of the processes of science in determining what is, and what is not, science</td>
<td>• Deepening understanding of the significance of the processes used in science</td>
</tr>
<tr>
<td>• Beginning to critically think about scientific claims and the consequences of basing decisions on false claims</td>
<td>• Demonstrating critical and skeptical thinking when presented with scientific and non-scientific claims in various media</td>
</tr>
<tr>
<td>• Discovering order in the natural world by analyzing and describing patterns, with support (e.g., linear and cyclic causal patterns, proportional relationships)</td>
<td>• Discovering, recognizing, and analyzing patterns with increasing independence</td>
</tr>
<tr>
<td>• Developing skills for a more systematic approach to scientific inquiry</td>
<td>• Using deeper, more thorough, analysis and evaluation of design and scientific error</td>
</tr>
<tr>
<td>• Developing experiential knowledge of STEAM (science, technology, engineering, art, and mathematics) related design</td>
<td>• Performing experimental and engineering design with greater independence</td>
</tr>
<tr>
<td>• Developing communication strategies for science (presenting evidence and using reasoning and argumentation)</td>
<td>• Developing formalized communication strategies for science with more rigorous, logical argumentation and reasoning</td>
</tr>
<tr>
<td>• Reflecting about personal skills and character traits that suit STEAM-related careers</td>
<td>• Examining science career opportunities</td>
</tr>
</tbody>
</table>

- Developing a framework of understanding regarding the interdisciplinary concepts of science (matter, patterns in form and function, energy, equilibrium, change, systems, and models) and the interconnectedness of sciences and other STEAM fields
- Reflecting on the risks and benefits of scientific and technological developments
- Deepening an understanding of perspectives
- Considering other perspectives when making decisions about the applications of science
- Critically thinking about the outcomes and applications of science with consideration of ethics
- Making thoughtful decisions regarding science and technology issues
- Critically evaluating perspectives using divergent and convergent thinking
Appendix B: Literacy Strategies that Support Science Learning

Reading and Viewing
- Discuss prior knowledge and the purpose of reading.
- Provide a range of materials and opportunities for reading and viewing (e.g., texts, such as textbooks, case studies, magazine articles, lab instructions, and demonstrations).
- Help support student understanding of the textbook genre and the use of features such as the table of contents, glossary, index, subtitles, and pictures.
- Explicitly teach how to extract information from table diagrams and graphs (informational text).
- Provide opportunities to translate from informational text to written text.
- Model and use gradual release to teach note-taking.

Writing and Representing
- Discuss the topic before students begin writing.
- Use the gradual release of responsibility model with exemplars of scientific writing.
- Provide opportunities for students to produce parts of and whole procedural reports.
- Use templates and prompts (sentence stems) to guide students in writing justified arguments and explanations.
- Explicitly teach summarizing.

Vocabulary
- Identify terms and phrases upfront that are critical to a topic.
- Provide instruction regarding the origin, a brief explanation, or a description of the new word.
- Associate the word with an image or other nonlinguistic representation of the word.
- Provide students with opportunities to provide their own explanations or nonlinguistic representations of the word or phrase.
- Discuss differences in the meaning of words shared by science and everyday language (e.g., law, theory, fact, variable).

Speaking and Listening
- Use discourse to promote scientific learning.
- Use think-pair-share and jigsaw to promote peer-to-peer talking.
- Have students work in groups to conduct inquiries.

Assessment Literacy
- Model strategies for test writing (review the design and layout of the test and work within time limits).
- Teach test-question vocabulary (e.g., explain, list, describe, compare) to recognize what they are being asked to do.
- Model how to answer questions of different types.
- Teach students how to reflect on areas of strength and weakness and develop a concrete learning plan to move forward.
- Provide a variety of ways for students to demonstrate their understanding (including reports, presentations, written tests, and science portfolios.)
References

References

