Acknowledgments

The Prince Edward Island Department of Education, Early Learning and Culture gratefully acknowledges the contributions of the following groups and individuals toward the development of the Prince Edward Island Grade 6 Mathematics Curriculum Guide:

- The following specialists from the Prince Edward Island Department of Education, Early Learning and Culture:

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eamon Graham</td>
<td>Elementary Mathematics & Science Specialist, French Curriculum, Department of Education, Early Learning and Culture</td>
</tr>
<tr>
<td>J. Blaine Bernard</td>
<td>Secondary Mathematics Specialist, English Curriculum, Department of Education, Early Learning and Culture</td>
</tr>
<tr>
<td>Ted Johnston</td>
<td>Elementary Mathematics & Science Specialist, English Curriculum, Department of Education, Early Learning and Culture</td>
</tr>
<tr>
<td>Brenda Larsen</td>
<td>Elementary Mathematics & Science Specialist, English Curriculum, Department of Education, Early Learning and Culture</td>
</tr>
</tbody>
</table>

- The 2010-2011 grade six mathematics pilot teachers:

<table>
<thead>
<tr>
<th>Name</th>
<th>School</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheryl Turner</td>
<td>Athena Consolidated</td>
</tr>
<tr>
<td>David Delgado</td>
<td>Greenfield Elementary</td>
</tr>
<tr>
<td>Stephanie Rooney</td>
<td>Englewood School</td>
</tr>
<tr>
<td>Sheryl O’Hanley</td>
<td>Morell Consolidated</td>
</tr>
<tr>
<td>Nadine Gallant</td>
<td>Tignish Elementary</td>
</tr>
<tr>
<td>Linda Inman - Hyson</td>
<td>West Royalty Elementary</td>
</tr>
<tr>
<td>Patti McQuaid</td>
<td>Glen Stewart Elementary</td>
</tr>
<tr>
<td>Ellen Read</td>
<td>West Royalty Elementary</td>
</tr>
<tr>
<td>Lindsay Baillie</td>
<td>Greenfield Elementary</td>
</tr>
<tr>
<td>Lisa Paynter</td>
<td>Parkside Elementary</td>
</tr>
<tr>
<td>Paul Sullivan</td>
<td>Southern Kings Consolidated</td>
</tr>
<tr>
<td>Elsie Moore</td>
<td>Southern Kings Consolidated</td>
</tr>
<tr>
<td>Jill Richard</td>
<td>Athena Consolidated</td>
</tr>
<tr>
<td>Linda Trainor</td>
<td>Stratford Elementary School</td>
</tr>
<tr>
<td>Carol Clarke</td>
<td>Amherst Cove Consolidated</td>
</tr>
<tr>
<td>Elaine Murphy</td>
<td>Stratford Elementary School</td>
</tr>
<tr>
<td>Marie McMahon – Young</td>
<td>Stratford Elementary School</td>
</tr>
<tr>
<td>Dawn Ward</td>
<td>Stratford Elementary School</td>
</tr>
<tr>
<td>Maureen MacBeath</td>
<td>West Royalty Elementary</td>
</tr>
</tbody>
</table>

- The Western and Northern Canadian Protocol (WNCP) for Collaboration in Education
- The Alberta Department of Education
- The New Brunswick Department of Education
Table of Contents

Background and Rationale

- Essential Graduation Learnings .. 1
- Curriculum Focus .. 2

Conceptual Framework for K-9 Mathematics

- Mathematical Processes ... 4
- The Nature of Mathematics ... 7

Contexts for Teaching and Learning

- Connections Across the Curriculum 10
- Homework .. 10
- Diversity in Student Needs .. 10
- Gender and Cultural Equity .. 11
- Mathematics for EAL Learners .. 11
- Education for Sustainable Development 11

Assessment and Evaluation

- Assessment ... 12
- Evaluation .. 14
- Reporting .. 14
- Guiding Principles .. 14
- Provincial Assessment Program ... 15

Structure and Design of the Curriculum Guide

- Specific Curriculum Outcomes ... 19

Grade 6 Mental Math Guide

- Mental Math in the Elementary Mathematics Curriculum 124
- Fact Learning ... 137
- Mental Computation .. 143
- Estimation .. 157
- Overview of Thinking Strategies in Mental Math 163

Appendix A: Glossary of Mathematical Models 173
Appendix B: Grade 6 Specific Curriculum Outcomes 180
Appendix C: Correlation of Grade 6 SCOs to *Math Makes Sense 6* .. 181
Appendix D: Table of Specifications 185

References .. 186
Background and Rationale

The development of an effective mathematics curriculum has encompassed a solid research base in its creation. From examining the curriculum proposed throughout Canada to securing the latest research in the teaching of mathematics, the result is a curriculum that should enable students to understand and use mathematics.

The Western and Northern Canadian Protocol (WNCP) Common Curriculum Framework for K-9 Mathematics (2006) has been adopted as the basis for a revised mathematics curriculum in Prince Edward Island. The Common Curriculum Framework was developed by the seven Canadian western and northern ministries of education (British Columbia, Alberta, Saskatchewan, Manitoba, Yukon Territory, Northwest Territories and Nunavut) in collaboration with teachers, administrators, parents, business representatives, post-secondary educators and others. The framework identifies beliefs about mathematics, general and specific student outcomes, and achievement indicators agreed upon by the seven jurisdictions. This document is based on both national and international research by the WNCP and the Principles and Standards for School Mathematics (2000), published by the National Council of Teachers of Mathematics (NCTM).

Essential Graduation Learnings

Essential graduation learnings (EGLs) are statements describing the knowledge, skills and attitudes expected of all students who graduate from high school. Achievement of the essential graduation learnings will prepare students to continue to learn throughout their lives. These learnings describe expectations not in terms of individual school subjects but in terms of knowledge, skills and attitudes developed throughout the curriculum. They confirm that students need to make connections and develop abilities across subject boundaries if they are to be ready to meet the shifting and ongoing demands of life, work and study today and in the future. Essential graduation learnings are cross-curricular, and curriculum in all subject areas is focused to enable students to achieve these learnings. Essential graduation learnings serve as a framework for the curriculum development process.

Specifically, graduates from the public schools of Prince Edward Island will be able to demonstrate knowledge, skills and attitudes in the following essential graduation learnings:

- Respond with critical awareness to various forms of the arts and be able to express themselves through the arts.
- Assess social, cultural, economic and environmental interdependence in a local and global context.
- Use the listening, viewing, speaking and writing modes of language(s), and mathematical and scientific concepts and symbols to think, learn and communicate effectively.
- Continue to learn and to pursue an active, healthy lifestyle.
- Use the strategies and processes needed to solve a wide variety of problems, including those requiring language, and mathematical and scientific concepts.
- Use a variety of technologies, demonstrate an understanding of technological applications and apply appropriate technologies for solving problems.

More specifically, curriculum outcome statements articulate what students are expected to know and be able to do in particular subject areas. Through the achievement of curriculum outcomes, students demonstrate the essential graduation learnings.
Curriculum Focus
There is an emphasis in the Prince Edward Island mathematics curriculum on particular key concepts at each grade which will result in greater depth of understanding. There is also more emphasis on number sense and operations in the early grades to ensure students develop a solid foundation in numeracy. The intent of this document is to clearly communicate high expectations for students in mathematics education to all educational partners. Students must learn mathematics with understanding, actively building new knowledge from experience and prior knowledge (NCTM Principles and Standards for School Mathematics, 2000).

The main goals of mathematics education are to prepare students to:
- use mathematics confidently to solve problems;
- communicate and reason mathematically;
- appreciate and value mathematics;
- make connections between mathematics and its applications;
- commit themselves to lifelong learning; and
- become mathematically literate adults, using mathematics to contribute to society.

Students who have met these goals will:
- gain understanding and appreciation of the contributions of mathematics as a science, philosophy and art;
- exhibit a positive attitude toward mathematics;
- engage and persevere in mathematical tasks and projects;
- contribute to mathematical discussions;
- take risks in performing mathematical tasks; and
- exhibit curiosity.

21st Century Learning

According to Bernie Trilling and Charles Fadel in 21st Century Skills (2009), “critical thinking and problem solving are considered ... the new basics of 21st century learning”. They further state “…using knowledge as it is being learned – applying skills like critical thinking, problem solving, and creativity to the content knowledge – increases motivation and improves learning outcomes.” (Trilling & Fadel, 2009).
Conceptual Framework for K – 9 Mathematics

The chart below provides an overview of how mathematical processes and the nature of mathematics influence learning outcomes:

<table>
<thead>
<tr>
<th>GRADE STRAND</th>
<th>K</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>Patterns and Relations</td>
<td></td>
</tr>
<tr>
<td>• Patterns</td>
<td></td>
</tr>
<tr>
<td>• Variables and Equations</td>
<td></td>
</tr>
<tr>
<td>Shape and Space</td>
<td></td>
</tr>
<tr>
<td>• Measurement</td>
<td></td>
</tr>
<tr>
<td>• 3-D Objects and 2-D shapes</td>
<td></td>
</tr>
<tr>
<td>• Transformations</td>
<td></td>
</tr>
<tr>
<td>Statistics and Probability</td>
<td></td>
</tr>
<tr>
<td>• Data Analysis</td>
<td></td>
</tr>
<tr>
<td>• Chance and Uncertainty</td>
<td></td>
</tr>
</tbody>
</table>

The mathematics curriculum describes the nature of mathematics, as well as the mathematical processes and the mathematical concepts to be addressed. This curriculum is arranged into four strands, namely: Number, Patterns and Relations, Shape and Space, and Statistics and Probability. These strands are not intended to be discrete units of instruction. The integration of outcomes across strands makes mathematical experiences meaningful. Students should make the connection among concepts both within and across strands. Consider the following when planning for instruction:

- Integration of the mathematical processes within each strand is expected.
- By decreasing emphasis on rote calculation, drill and practice, and the size of numbers used in paper and pencil calculations, more time is available for concept development.
- Problem solving, reasoning and connections are vital to increasing mathematical fluency, and must be integrated throughout the program.

➢ There is to be a balance among mental mathematics and estimation, paper and pencil exercises, and the use of technology, including calculators and computers. Concepts should be introduced using models and gradually developed from the concrete to the pictorial to the symbolic.
Mathematical Processes

There are critical components that students must encounter in a mathematics program in order to achieve the goals of mathematics education and encourage lifelong learning in mathematics. The Prince Edward Island mathematics curriculum incorporates the following seven interrelated mathematical processes that are intended to permeate teaching and learning. These unifying concepts serve to link the content to methodology.

Students are expected to:

- communicate in order to learn and express their understanding of mathematics; [Communications: C]
- connect mathematical ideas to other concepts in mathematics, to everyday experiences and to other disciplines; [Connections: CN]
- demonstrate fluency with mental mathematics and estimation; [Mental Mathematics and Estimation: ME]
- develop and apply new mathematical knowledge through problem solving; [Problem Solving: PS]
- develop mathematical reasoning; [Reasoning: R]
- select and use technologies as tools for learning and solving problems; [Technology: T]
- and
- develop visualization skills to assist in processing information, making connections and solving problems. [Visualization: V]

Communication [C]

Students need opportunities to read about, represent, view, write about, listen to and discuss mathematical ideas. These opportunities allow students to create links between their own language and ideas, and the formal language and symbols of mathematics. Communication is important in clarifying, reinforcing and modifying ideas, knowledge, attitudes and beliefs about mathematics. Students should be encouraged to use a variety of forms of communication while learning mathematics. Students also need to communicate their learning using mathematical terminology. Communication can help students make connections among concrete, pictorial, symbolic, verbal, written and mental representations of mathematical ideas.

Connections [CN]

Contextualization and making connections to the experiences of learners are powerful processes in developing mathematical understanding. When mathematical ideas are connected to each other or to real-world phenomena, students can begin to view mathematics as useful, relevant and integrated. Learning mathematics within contexts and making connections relevant to learners can validate past experiences, and increase student willingness to participate and be actively engaged. The brain is constantly looking for and making connections.

For instance, opportunities should be created frequently to link mathematics and career opportunities. Students need to become aware of the importance of mathematics and the need for mathematics in many career paths. This realization will help maximize the number of students who strive to develop and maintain the mathematical abilities required for success in further areas of study.
Mental Mathematics and Estimation [ME]

Mental mathematics is a combination of cognitive strategies that enhance flexible thinking and number sense. It is calculating mentally without the use of external memory aids. Mental mathematics enables students to determine answers without paper and pencil. It improves computational fluency by developing efficiency, accuracy and flexibility. Even more important than performing computational procedures or using calculators is the greater facility that students need – more than ever before – with estimation and mental mathematics (National Council of Teachers of Mathematics, May 2005). Students proficient with mental mathematics “become liberated from calculator dependence, build confidence in doing mathematics, become more flexible thinkers and are more able to use multiple approaches to problem solving” (Rubenstein, 2001). Mental mathematics “provides a cornerstone for all estimation processes offering a variety of alternate algorithms and non-standard techniques for finding answers” (Hope, 1988).

Estimation is a strategy for determining approximate values or quantities, usually by referring to benchmarks or using referents, or for determining the reasonableness of calculated values. Students need to know how, when and what strategy to use when estimating. Estimation is used to make mathematical judgments and develop useful, efficient strategies for dealing with situations in daily life.

Students need to develop both mental mathematics and estimation skills through context and not in isolation so they are able to apply them to solve problems. Whenever a problem requires a calculation, students should follow the decision making process as described below:

- **Problem Solving [PS]**

 Learning through problem solving should be the focus of mathematics at all grade levels. When students encounter new situations and respond to questions of the type, “How would you. . . ?” or “How could you. . . ?” the problem-solving approach is being modeled. Students develop their own problem-solving strategies by being open to listening, discussing and trying different strategies.
In order for an activity to be problem-solving based, it must ask students to determine a way to get from what is known to what is sought. If students have already been given ways to solve the problem, it is not a problem, but practice. A true problem requires students to use prior learning in new ways and contexts. Problem solving requires and builds depth of conceptual understanding and student engagement.

Problem solving is also a powerful teaching tool that fosters multiple, creative and innovative solutions. Creating an environment where students openly look for and engage in finding a variety of strategies for solving problems empowers students to explore alternatives and develops confident and cognitive mathematical risk takers.

Over time, numerous problem-solving strategies should be modeled for students, and students should be encouraged to employ various strategies in many problem-solving situations. While choices with respect to the timing of the introduction of any given strategy will vary, the following strategies should all become familiar to students:

- use estimation
- guess and check
- look for a pattern
- make an organized list or table
- use a model
- work backwards
- use a formula
- use a graph, diagram or flow chart
- solve a simpler problem
- use algebra

Reasoning [R]

Mathematical reasoning helps students think logically and make sense of mathematics. Students need to develop confidence in their abilities to reason and justify their mathematical thinking. High-order questions challenge students to think and develop a sense of wonder about mathematics. Mathematical experiences in and out of the classroom provide opportunities for inductive and deductive reasoning. Inductive reasoning occurs when students explore and record results, analyze observations, make generalizations from patterns and test these generalizations. Deductive reasoning occurs when students reach new conclusions based upon what is already known or assumed to be true.

Technology [T]

Technology contributes to the learning of a wide range of mathematical outcomes and enables students to explore and create patterns, examine relationships, test conjectures and solve problems.

Calculators and computers can be used to:

- explore and demonstrate mathematical relationships and patterns;
- organize and display data;
- extrapolate and interpolate;
- assist with calculation procedures as part of solving problems;
- decrease the time spent on computations when other mathematical learning is the focus;
- reinforce the learning of basic facts and test properties;
- develop personal procedures for mathematical operations;
- create geometric displays;
- simulate situations; and
- develop number sense.

Technology contributes to a learning environment in which the growing curiosity of students can lead to rich mathematical discoveries at all grade levels. While technology can be used in K–3 to enrich learning, it is expected that students will meet all outcomes without the use of technology.
Visualization [V]
Visualization involves thinking in pictures and images, and the ability to perceive, transform and recreate different aspects of the visual-spatial world. The use of visualization in the study of mathematics provides students with opportunities to understand mathematical concepts and make connections among them. Visual images and visual reasoning are important components of number, spatial and measurement sense. Number visualization occurs when students create mental representations of numbers.

Being able to create, interpret and describe a visual representation is part of spatial sense and spatial reasoning. Spatial visualization and reasoning enable students to describe the relationships among and between 3-D objects and 2-D shapes.

Measurement visualization goes beyond the acquisition of specific measurement skills. Measurement sense includes the ability to determine when to measure, to determine when to estimate and to know several estimation strategies (Shaw & Cliatt, 1989).

Visualization is fostered through the use of concrete materials, technology and a variety of visual representations.

➢ The Nature of Mathematics
Mathematics is one way of trying to understand, interpret and describe our world. There are a number of components that define the nature of mathematics and these are woven throughout this document. These components include: change, constancy, number sense, patterns, relationships, spatial sense and uncertainty.

Change
It is important for students to understand that mathematics is dynamic and not static. As a result, recognizing change is a key component in understanding and developing mathematics. Within mathematics, students encounter conditions of change and are required to search for explanations of that change. To make predictions, students need to describe and quantify their observations, look for patterns, and describe those quantities that remain fixed and those that change. For example, the sequence 4, 6, 8, 10, 12, … can be described as:

- skip counting by 2s, starting from 4;
- an arithmetic sequence, with first term 4 and a common difference of 2; or
- a linear function with a discrete domain.

Constancy
Different aspects of constancy are described by the terms stability, conservation, equilibrium, steady state and symmetry (AAAS–Benchmarks, 1993, p. 270). Many important properties in mathematics and science relate to properties that do not change when outside conditions change. Examples of constancy include:

- the area of a rectangular region is the same regardless of the methods used to determine the solution;
- the sum of the interior angles of any triangle is 180°; and
- the theoretical probability of flipping a coin and getting heads is 0.5.

Some problems in mathematics require students to focus on properties that remain constant. The recognition of constancy enables students to solve problems involving constant rates of change, lines with constant slope, direct variation situations or the angle sums of polygons.
Number Sense

Number sense, which can be thought of as intuition about numbers, is the most important foundation of numeracy (The Primary Program, B.C., 2000, p. 146). A true sense of number goes well beyond the skills of simply counting, memorizing facts and the situational rote use of algorithms. Number sense develops when students connect numbers to real-life experiences, and use benchmarks and referents. This results in students who are computationally fluent, flexible with numbers and have intuition about numbers. The evolving number sense typically comes as a by-product of learning rather than through direct instruction. However, number sense can be developed by providing rich mathematical tasks that allow students to make connections.

Patterns

Mathematics is about recognizing, describing and working with numerical and non-numerical patterns. Patterns exist in all strands and it is important that connections are made among strands. Working with patterns enables students to make connections within and beyond mathematics. These skills contribute to students’ interaction with and understanding of their environment. Patterns may be represented in concrete, visual or symbolic form. Students should develop fluency in moving from one representation to another. Students must learn to recognize, extend, create and use mathematical patterns. Patterns allow students to make predictions, and justify their reasoning when solving routine and non-routine problems. Learning to work with patterns in the early grades helps develop students’ algebraic thinking that is foundational for working with more abstract mathematics in higher grades.

Relationships

Mathematics is used to describe and explain relationships. As part of the study of mathematics, students look for relationships among numbers, sets, shapes, objects and concepts. The search for possible relationships involves the collection and analysis of data, and describing relationships visually, symbolically, orally or in written form.

Spatial Sense

Spatial sense involves visualization, mental imagery and spatial reasoning. These skills are central to the understanding of mathematics. Spatial sense enables students to reason and interpret among and between 3-D and 2-D representations and identify relationships to mathematical strands. Spatial sense is developed through a variety of experiences and interactions within the environment. The development of spatial sense enables students to solve problems involving 3-D objects and 2-D shapes.

Spatial sense offers a way to interpret and reflect on the physical environment and its 3-D or 2-D representations. Some problems involve attaching numerals and appropriate units (measurement) to dimensions of objects. Spatial sense allows students to make predictions about the results of changing these dimensions. For example:

- knowing the dimensions of an object enables students to communicate about the object and create representations;
- the volume of a rectangular solid can be calculated from given dimensions; and
- doubling the length of the side of a square increases the area by a factor of four.

Uncertainty

In mathematics, interpretations of data and the predictions made from data may lack certainty. Events and experiments generate statistical data that can be used to make predictions. It is important to recognize that these predictions (interpolations and extrapolations) are based upon patterns that have a degree of uncertainty. The quality of the interpretation is directly related to the quality of the data. An awareness of uncertainty allows students to assess the reliability of data and data interpretation.
Chance addresses the predictability of the occurrence of an outcome. As students develop their understanding of probability, the language of mathematics becomes more specific and describes the degree of uncertainty more accurately.

Contexts for Learning and Teaching

The Prince Edward Island mathematics curriculum is based upon several key assumptions or beliefs about mathematics learning which have grown out of research and practice. These beliefs include:

- Mathematics learning is an active and constructive process.
- Learners are individuals who bring a wide range of prior knowledge and experiences, and who learn via various styles and at different rates.
- Learning is most likely to occur when placed in meaningful contexts and in an environment that supports exploration, risk taking and critical thinking and that nurtures positive attitudes and sustained effort.
- Learning is most effective when standards of expectation are made clear with on-going assessment and feedback.

Students are curious, active learners with individual interests, abilities and needs. They come to classrooms with varying knowledge, life experiences and backgrounds. A key component in successfully developing numeracy is making connections to these backgrounds and experiences.

Children develop a variety of mathematical ideas before they enter school. They make sense of their environment through observations and interactions at home and in the community. Mathematics learning is embedded in everyday activities, such as playing, reading, storytelling and helping around the home. Such activities can contribute to the development of number and spatial sense in children. Problem solving and reasoning skills are fostered when children are engaged in activities such as comparing quantities, searching for patterns, sorting objects, ordering objects, creating designs, building with blocks and talking about these activities. Positive early experiences in mathematics are as critical to child development as are early literacy experiences.

Students learn by attaching meaning to what they do and need to construct their own meaning of mathematics. This meaning is best developed when learners encounter mathematical experiences that proceed from the simple to the complex and from the concrete to the abstract. The use of models and a variety of pedagogical approaches can address the diversity of learning styles and developmental stages of students, and enhance the formation of sound, transferable, mathematical concepts. At all levels, students benefit from working with a variety of materials, tools and contexts when constructing meaning about new mathematical ideas. Meaningful discussions can provide essential links among concrete, pictorial and symbolic representations of mathematics.

The learning environment should value and respect the experiences and ways of thinking of all students, so that learners are comfortable taking intellectual risks, asking questions and posing conjectures. Students need to explore problem-solving situations in order to develop personal strategies and become mathematically literate. Learners must be encouraged that it is acceptable to solve problems in different ways and realize that solutions may vary.
Connections across the Curriculum
There are many possibilities for connecting Grade 6 mathematical learning with the learning occurring in other subject areas. Making connections between subject areas gives students experiences with transferring knowledge and provides rich contexts in which students are able to initiate, make sense of, and extend their learning. When connections between subject areas are made, the possibilities for transdisciplinary inquiries and deeper understanding arise. When making such connections, however, teachers must be cautious not to lose the integrity of the learning in any of the subjects.

Homework
Homework is an essential component of the mathematics program, as it extends the opportunity for students to think mathematically and to reflect on ideas explored during class time. The provision of this additional time for reflection and practice plays a valuable role in helping students to consolidate their learning.

Traditionally, homework has meant completing ten to twenty drill and practice questions relating to the procedure taught in a given day. With the increased emphasis on problem solving, conceptual understanding and mathematical reasoning, however, it is important that homework assignments change accordingly. More assignments involving problem solving, mathematical investigations, written explanations and reflections, and data collection should reduce some of the basic practice exercises given in isolation. In fact, a good problem can sometimes accomplish more than many drill oriented exercises on a topic.

As is the case in designing all types of homework, the needs of the students and the purpose of the assignment will dictate the nature of the questions included. Homework need not be limited to reinforcing learning; it provides an excellent opportunity to revisit topics explored previously and to introduce new topics before teaching them in the classroom. Homework provides an effective way to communicate with parents and provides parents an opportunity to be actively involved in their child's learning. By ensuring that assignments model classroom instruction and sometimes require parental input, a parent will have a clearer understanding of the mathematics curriculum and the progress of his or her child in relationship to it. As Van de Walle (1994, p. 454) suggests, homework can serve as a parent’s window to the classroom.

Diversity in Student Needs
Every classroom comprises students at many different cognitive levels. Rather than choosing a certain level at which to teach, a teacher is responsible for tailoring instruction to reach as many of these students as possible. In general, this may be accomplished by assigning different tasks to different students or assigning the same open-ended task to most students. Sometimes it is appropriate for a teacher to group students by interest or ability, assigning them different tasks in order to best meet their needs. These groupings may last anywhere from minutes to semesters but should be designed to help all students, whether strong, weak or average, to reach their highest potential. There are other times when an appropriately open-ended task can be valuable to a broad spectrum of students. For example, asking students to make up an equation for which the answer is 5 allows some students to make up very simple equations while others can design more complex ones. The different equations constructed can become the basis for a very rich lesson, from which all students come away with a better understanding of what the solution to an equation really means.
Gender and Cultural Equity

The mathematics curriculum and mathematics instruction must be designed to equally empower both male and female students, as well as members of all cultural backgrounds. Ultimately, this should mean that not only should enrolments of students of both genders and various cultural backgrounds in public school mathematics courses reflect numbers in society, but also that representative numbers of both genders and the various cultural backgrounds should move on to successful post-secondary studies and careers in mathematics and mathematics-related areas.

Mathematics for EAL Learners

The Prince Edward Island mathematics curriculum is committed to the principle that learners of English as an additional language (EAL) should be full participants in all aspects of mathematics education. English proficiency and cultural differences must not be a barrier to full participation. All students should study a comprehensive mathematics curriculum with high-quality instruction and coordinated assessment. The *Principles and Standards for School Mathematics* (NCTM, 2000) emphasizes communication “as an essential part of mathematics and mathematics education (p.60).” The *Standards* elaborate that all students, and EAL learners in particular, need to have opportunities and be given encouragement and support for speaking, writing, reading and listening in mathematics classes. Such efforts have the potential to help EAL learners overcome barriers that will facilitate “communicating to learn mathematics and learning to communicate mathematically (NCTM, p.60).”

To this end:

- schools should provide EAL learners with support in their dominant language and English language while learning mathematics;
- teachers, counselors, and other professionals should consider the English-language proficiency level of EAL learners as well as their prior course work in mathematics;
- the mathematics proficiency level of EAL learners should be solely based on their prior academic record and not other factors;
- mathematics teaching, curriculum, and assessment strategies should be based on best practices and build on the prior knowledge and experiences of students and on their cultural heritage;
- the importance of mathematics and the nature of the mathematics program should be communicated, with appropriate language support, to both students and parents; and
- to verify that barriers have been removed, educators should monitor enrollment and achievement data to determine whether EAL learners have gained access to, and are succeeding in, mathematics courses.

Education for Sustainable Development

Education for sustainable development (ESD) involves incorporating the key themes of sustainable development – such as poverty alleviation, human rights, health, environmental protection and climate change – into the education system. ESD is a complex and evolving concept and requires learning about these key themes from a social, cultural, environmental and economic perspective and explores how those factors are inter-related and inter-dependent.

With this in mind, it is important that all teachers, including mathematics teachers, attempt to incorporate these key themes in their subject areas. One tool that can be used is the searchable on-line database...
Resources for Rethinking, found at http://r4r.ca/en. It provides teachers with access to materials that integrate ecological, social and economic spheres through active, relevant, interdisciplinary learning.

Assessment and Evaluation

Assessment and evaluation are essential components of teaching and learning in mathematics. The basic principles of assessment and evaluation are as follows:

- Effective assessment and evaluation are essential to improving student learning.
- Effective assessment and evaluation are aligned with the curriculum outcomes.
- A variety of tasks in an appropriate balance gives students multiple opportunities to demonstrate their knowledge and skills.
- Effective evaluation requires multiple sources of assessment information to inform judgments and decisions about the quality of student learning.
- Meaningful assessment data can demonstrate student understanding of mathematical ideas, student proficiency in mathematical procedures, and student beliefs and attitudes about mathematics.

Without effective assessment and evaluation it is impossible to know whether students have learned, whether teaching has been effective or how best to address student learning needs. The quality of the assessment and evaluation in the educational process has a profound and well-established link to student performance. Research consistently shows that regular monitoring and feedback are essential to improving student learning. What is assessed and evaluated, how it is assessed and evaluated and how results are communicated send clear messages to students and others.

Assessment

Assessment is the systematic process of gathering information on student learning. To determine how well students are learning, assessment strategies have to be designed to systematically gather information on the achievement of the curriculum outcomes. Teacher-developed assessments have a wide variety of uses, such as:

- providing feedback to improve student learning;
- determining if curriculum outcomes have been achieved;
- certifying that students have achieved certain levels of performance;
- setting goals for future student learning;
- communicating with parents about their children’s learning;
- providing information to teachers on the effectiveness of their teaching, the program and the learning environment;
- meeting the needs of guidance and administration.

A broad assessment plan for mathematics ensures a balanced approach to summarizing and reporting. It should consider evidence from a variety of sources including:

- formal and informal observations
- work samples
- anecdotal records
- conferences
- teacher-made and other tests
- portfolios
- learning journals
- questioning
- performance assessment
- peer- and self-assessment
This balanced approach for assessing mathematics development is illustrated in the diagram below.

There are three interrelated purposes for classroom assessment: assessment as learning, assessment for learning and assessment of learning. Characteristics of each type of assessment are highlighted below.

Assessment as learning is used:
- to engage students in their own learning and self-assessment;
- to help students understand what is important in the mathematical concepts and particular tasks they encounter;
- to develop effective habits of metacognition and self-coaching;
- to help students understand themselves as learners - how they learn as well as what they learn - and to provide strategies for reflecting on and adjusting their learning.

Assessment for learning is used:
- to gather and use ongoing information in relation to curriculum outcomes in order to adjust instruction and determine next steps for individual learners and groups;
- to identify students who are at risk, and to develop insight into particular needs in order to differentiate learning and provide the scaffolding needed;
- to provide feedback to students about how they are doing and how they might improve;
- to provide feedback to other professionals and to parents about how to support students’ learning.
Assessment of learning is used:

- to determine the level of proficiency that a student has demonstrated in terms of the designated learning outcomes for a unit or group of units;
- to facilitate reporting;
- to provide the basis for sound decision-making about next steps in a student’s learning.

Evaluation

Evaluation is the process of analysing, reflecting upon and summarizing assessment information and making judgments or decisions based upon the information gathered. Evaluation involves teachers and others in analysing and reflecting upon information about student learning gathered in a variety of ways.

This process requires:

- student learning;
- developing clear criteria and guidelines for assigning marks or grades to student work;
- synthesizing information from multiple sources;
- weighing and balancing all available information; and
- using a high level of professional judgment in making decisions based upon that information.

Reporting

Reporting on student learning should focus on the extent to which students have achieved the curriculum outcomes. Reporting involves communicating the summary and interpretation of information about student learning to various audiences who require it. Teachers have a special responsibility to explain accurately what progress students have made in their learning and to respond to parent and student inquiries about learning. Narrative reports on progress and achievement can provide information on student learning which letter or number grades alone cannot. Such reports might, for example, suggest ways in which students can improve their learning and identify ways in which teachers and parents can best provide support. Effective communication with parents regarding their children’s progress is essential in fostering successful home-school partnerships. The report card is one means of reporting individual student progress. Other means include the use of conferences, notes and phone calls.

Guiding Principles

In order to provide accurate, useful information about the achievement and instructional needs of students, certain guiding principles for the development, administration and use of assessments must be followed. The document *Principles for Fair Student Assessment Practices for Education in Canada* (1993) articulates five fundamental assessment principles as follows:

- Assessment methods should be appropriate for and compatible with the purpose and context of the assessment.
- Students should be provided with sufficient opportunity to demonstrate the knowledge, skills, attitudes or behaviours being assessed.
- Procedures for judging or scoring student performance should be appropriate for the assessment method used and be consistently applied and monitored.
- Procedures for summarizing and interpreting assessment results should yield accurate and informative representations of a student’s performance in relation to the curriculum outcomes for the reporting period.
Assessment reports should be clear, accurate and of practical value to the audience for whom they are intended.

These principles highlight the need for assessment which ensures that:

- the best interests of the student are paramount;
- assessment informs teaching and promotes learning;
- assessment is an integral and ongoing part of the learning process and is clearly related to the curriculum outcomes; and
- assessment is fair and equitable to all students and involves multiple sources of information.

While assessments may be used for different purposes and audiences, all assessments must give each student optimal opportunity to demonstrate what he/she knows and can do.

Provincial Assessment Program

Island students participate in provincial, national and international assessments that help measure individual and overall student achievement and the overall performance of our provincial education system.

Provincial assessments are conducted yearly and tell us how well students are doing at key stages of learning. Students are assessed in reading, writing and mathematics at the end of Grade 3, Grade 6, and Grade 9.

These provincial assessments are developed by teachers from across the province and are based on the curriculum used in Island schools. These assessments tell us how well students are learning the curriculum, where students may need help, and how resources may be directed to support students attaining a deeper understanding of mathematical thinking.

Provincial assessments are just one of many tools used to monitor student learning. Parents should talk to the teacher about the full scope of their child’s performance. Working together with good information, parents and teachers can help students to reach their full potential.

The Department of Education and Early Childhood Development also supports a national assessment which takes place every three years. The Pan-Canadian Assessment Program (PCAP) assesses the performance of 13-year-old students in reading, math and science.

Every three years, Island students also take part in the Programme for International Student Assessment (PISA), which assesses the achievement of 15-year-old students in reading, math and science through a common international test.
Structure and Design of the Curriculum Guide

The learning outcomes in the Prince Edward Island mathematics curriculum are organized into four strands across the grades K-9. They are **Number, Patterns and Relations, Shape and Space**, and **Statistics and Probability**. These strands are further subdivided into sub-strands, which are the general curriculum outcomes (GCOs). They are overarching statements about what students are expected to learn in each strand or sub-strand from grades K-9.

<table>
<thead>
<tr>
<th>Strand</th>
<th>General Curriculum Outcome (GCO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (N)</td>
<td>Number: Develop number sense.</td>
</tr>
<tr>
<td>Patterns and Relations (PR)</td>
<td>Patterns: Use patterns to describe the world and solve problems.</td>
</tr>
<tr>
<td></td>
<td>Variables and Equations: Represent algebraic expressions in multiple ways.</td>
</tr>
<tr>
<td>Shape and Space (SS)</td>
<td>Measurement: Use direct and indirect measure to solve problems.</td>
</tr>
<tr>
<td></td>
<td>3-D Objects and 2-D Shapes: Describe the characteristics of 3-D objects and 2-D shapes, and analyze the relationships among them.</td>
</tr>
<tr>
<td></td>
<td>Transformations: Describe and analyze position and motion of objects and shapes.</td>
</tr>
<tr>
<td>Statistics and Probability (SP)</td>
<td>Data Analysis: Collect, display, and analyze data to solve problems.</td>
</tr>
<tr>
<td></td>
<td>Chance and Uncertainty: Use experimental or theoretical probabilities to represent and solve problems involving uncertainty.</td>
</tr>
</tbody>
</table>

Each general curriculum outcome is then subdivided into a number of specific curriculum outcomes (SCOs). Specific curriculum outcomes are statements that identify the specific skills, understandings, and knowledge students are required to attain by the end of a given grade.

Finally, each specific curriculum outcome has a list of achievement indicators that are used to determine whether students have met the corresponding specific outcome.

The first two pages for each outcome contain the following information:

- the corresponding **strand** and **General Curriculum Outcome**;
- the **Specific Curriculum Outcome**(s) and the mathematical **processes** which link this content to instructional methodology
- the **scope and sequence** of concept development related to this outcome(s) from grades 4-6;
- an **elaboration** of the outcome;
- a list of **achievement indicators**

Students who have achieved a particular outcome should be able to demonstrate their understanding in the manner specified by the achievement indicators. It is important to remember, however, that these indicators are not intended to be an exhaustive list for each outcome. Teachers may choose to use additional indicators as evidence that the desired learning has been achieved.
The last two pages for each outcome contain lists of **instructional strategies** and **strategies for assessment**.

The primary use of this section of the guide is as an **assessment for learning** (formative assessment) tool to assist teachers in planning instruction to improve learning. However, teachers may also find the ideas and suggestions useful in gathering **assessment of learning** (summative assessment) data to provide information on student achievement.

Following the Specific Curriculum Outcomes for grade six, you will find the **Mental Math Guide** which outlines the **Fact Learning, Mental Computation and Estimation** strategies for this grade level. Included is an **Overview of the Thinking Strategies in Mental Math** for grades one to six complete with a description of each strategy as well as a scope and sequence table of the strategies for the elementary grades.

A **Glossary of Mathematical Models** (common manipulatives) is also provided in Appendix A followed by a one-page List of Grade 6 Specific Curriculum Outcomes in Appendix B. Then, there is a **correlation of our SCOs with the resource**, *Math Makes Sense 6*, in Appendix C. Finally, the last appendix is a **Table of Specifications** categorizing the SCOs into the four content strands of mathematics. The intent of the appendices is to provide mathematics teachers with practical references.
NUMBER
SCO: N1: Demonstrate an understanding of place value for numbers:
 • greater than one million
 • less than one thousandth.

[C, CN, R, T]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[T] Technology</td>
<td>[V] Visualization</td>
<td>[R] Reasoning</td>
<td></td>
</tr>
</tbody>
</table>

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
</table>
| N1 Represent and describe whole numbers to 1 000 000. | N1 Demonstrate an understanding of place value for numbers:
 • greater than one million
 • less than one thousandth. | N2 Demonstrate an understanding of the addition, subtraction, multiplication and division of decimals (for more than 1-digit divisors or 2-digit multipliers, the use of technology is expected) to solve problems. |
| N8 Describe and represent decimals (tenths, hundredths, thousandths) concretely, pictorially and symbolically. | |

Elaboration

Students will extend their knowledge from numbers in the millions by discovering patterns that go beyond to the billions and trillions. Students should understand that the place value system follows a pattern such that:
- each position represents ten times as much as the position to its right;
- each position represents one tenth as much as the position to its left;
- positions are grouped in threes for purposes of reading numbers;
- when writing numbers, spaces (not commas) are used to show the positions with the exception of 4-digit numbers (e.g., 5640).

All students should be aware that numbers extend to the left up to infinity, and to the right into the ten thousandths, hundred thousandths and millionths places, and so on.

Students should have many opportunities to:
- read numbers several ways: for example, 6732.14 could be read as six thousand, seven hundred thirty-two and fourteen hundredths or sixty-seven hundred, thirty-two and fourteen hundredths;
- read numbers greater than a thousand: 2 456 870 346 is read two billion, four hundred fifty-six million, eight hundred seventy thousand, three hundred forty-six ("and" is used for decimal numbers);
- record numbers: for example, ask students to write twelve million, one hundred thousand in standard form (12 100 000) and decimal notation (12.1 million) (scientific notation will be explored in later grades);
- establish personal referents to develop a sense of larger numbers (e.g., local arena holds 500 people, population of their town is 10 000, a school/class collection of over a million small objects).

Through these experiences, students will develop flexibility in identifying and representing numbers beyond 1 000 000. It is also important for students to gain an understanding of the relative size (magnitude) of numbers through real life contexts that are personally meaningful (e.g., computer memory size, professional athletes’ salaries, Internet search responses, populations, or the microscopic world).

Students also need to know that the place value system extends to the right as well and that there are numbers smaller than 0.001.

This specific curriculum outcome is addressed in Math Makes Sense 6 in the following units:
- Unit 2, Lesson 1, pp. 46-50
- Unit 3, Lesson 1, pp. 88-91
SCO: N1: Demonstrate an understanding of place value for numbers:
 • greater than one million
 • less than one thousandth.
 [C, CN, R, T]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:

- Explain how the pattern of the place value system, e.g., the repetition of ones, tens and hundreds, makes it possible to read and write numerals for numbers of any magnitude.
- Provide examples of where large numbers and small decimals are used, e.g., media, science, medicine, technology.
SCO: N1: Demonstrate an understanding of place value for numbers:
 • greater than one million
 • less than one thousandth.
 [C, CN, R, T]

Instructional Strategies

Consider the following strategies when planning lessons:

- Ask students to find various representations for multi-digit and decimal numbers in newspapers and magazines. Encourage discussion on the need for accuracy in reporting these numbers and the appropriate use of rounded numbers.
- Present a metre stick as a number line from zero to one billion. Ask students where one million, half a billion, one hundred million, etc., would be on this number line.
- Write decimals using place value language and expanded notation to help explain equivalence of decimals.
 \[0.2 = 2 \text{ tenths} \]
 \[0.20 = 2 \text{ tenths} + 0 \text{ hundredths} \]
 \[0.200 = 2 \text{ tenths} + 0 \text{ hundredths} + 0 \text{ thousandths} \]
- Ensure that proper vocabulary is used when reading all numbers. Provide opportunities for students to read decimals in context. Saying decimals correctly will help students make the connection between decimals and fractions. 5.0072 should be read as “five and seventy-two ten thousandths” not “five point zero, zero, zero, seven, two”.

Suggested Activities

- Ask students to create an “A-B-C” book that includes real-world examples of very large numbers and very small decimals (e.g., population of Mexico City; length of an ant’s antenna in centimetres).
- Prepare and shuffle 5 sets of number cards (0-9 for each set). Have the students select nine cards and ask them to arrange the cards to make the greatest possible and least possible whole number. Have the students read each of the numbers. Consider extending the activity by asking students to determine:
 - how many different whole numbers could be made using the nine digits selected;
 - the number of $1000 bills one would get if the greatest and least numbers represented money amounts. This could be extended to explore the number of tens, hundreds, etc. in the number.
- Discuss words people use for large number that do not exist, i.e., gazillion, bazillion. This might peak students’ interest to research other prefixes past trillions.
- Ask students to determine the number of whole numbers between 2.03 million and 2.35 million.
- Ask students to find a value between 0.0001 and 0.00016.
- Include contexts that lend themselves to using large numbers such as astronomical data and demographic data. Contexts that lend themselves to decimal thousandths include sports data and metric measurements. An interesting activity involving decimals might require students to complete a chart such as: in 0.1 years, I could...; in 0.01 years, I could...; in 0.001 years, I could...
- Present this library information to students: Metropolitan Toronto Library 3 068 078 books; Bibliothèque de Montreal 2 911 764 books; North York Public Library 2 431 655 books. Ask students to rewrite the numbers in a format such as □ . □□□ million or □ . □□□ million books. Then ask them to make comparison statements about the number of books.
SCO: N1: Demonstrate an understanding of place value for numbers:
- greater than one million
- less than one thousandth.

[C, CN, R, T]

Assessment Strategies

- Have students explain at least three things they know about a number with 10 digits.
- Ask students to describe when 1 000 000 000 of something might be a big amount? A small amount?
- Have students generate a number with 7 – 10 digits. Have them find classmates with numbers that are similar (place value). Once they have found a group they belong to, have them order their numbers from least to greatest. Then have the class order the numbers from least to greatest. Have each student read their number. (This activity can be done in silence so students have to really look at the other numbers). This activity can be done using decimal numbers as well.
- Ask students to express 0.00674 in at least three different ways.
- Ask students to describe how the bolded digits in the following two numbers are the same and how they are different.

\[
\begin{align*}
546 397 305 & \quad 348 167 903 927 \\
0.0070 & \quad 0.0007
\end{align*}
\]

Extend the activity to decimals:

- Ask students to write a report on what he/she has learned about decimals and what questions he/she may now have concerning the topic.
SCO: **N2: Solve problems involving large numbers, using technology.**
[ME, PS, T]

<table>
<thead>
<tr>
<th>Communication</th>
<th>Problem Solving</th>
<th>Connections</th>
<th>Mental Math and Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C]</td>
<td>[PS]</td>
<td>[CN]</td>
<td>[ME]</td>
</tr>
<tr>
<td>Technology</td>
<td>Visualization</td>
<td>Reasoning</td>
<td></td>
</tr>
</tbody>
</table>

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2 Use estimation strategies including: front-end rounding; compensation; compatible numbers in problem-solving contexts.</td>
<td>N2 Solve problems involving large numbers, using technology.</td>
<td></td>
</tr>
</tbody>
</table>

Elaboration

Students should continue to use the four operations to solve mathematical and real-world problems with large numbers. They should also have the opportunity to create problems with large numbers for others to solve.

Technology such as calculators and computers are often useful tools and time-saving devices when solving these problems. It is important for students to determine when the use of these tools is appropriate and when mental math or other strategies are more appropriate (e.g., $12 000 000 is won in the lottery and it is shared with 3 winners. How much does each person receive?).

Students should also be encouraged to estimate answers to test for reasonableness either before or after the calculation. Students should not assume an answer determined with technology is automatically correct.

There are many interesting sources of large numbers, both on the Internet and in reference books. Possible examples that could be discussed are world populations, quantity of data electronic devices can hold (e.g., gigabyte), salaries, and astronomy.

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:
- Unit 2, Lesson 2, pp. 51-54
- Unit 2, Unit Problem, pp. 84, 85

Mental Math strategies will strengthen student understanding of this specific curriculum outcome. (Refer to pp. 122-171.)
SCO: **N2: Solve problems involving large numbers, using technology.**

[ME, PS, T]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:

- Identify which operation is necessary to solve a given problem and solve it.
- Determine the reasonableness of an answer.
- Estimate the solution and solve a given problem.
SCO: **N2: Solve problems involving large numbers, using technology.**

[ME, PS, T]

Instructional Strategies

Consider the following strategies when planning lessons:

- Have students research populations of cities and/or provinces in Canada and cities and/or countries of the world. Using this information, students can estimate differences, compare populations and draw conclusions about Canada compared to the world.

- Investigate the concept of “billions”. Although these are rarely found in students' experiences, numbers of this magnitude relate to national debt, personal fortunes, populations, pieces of trivia (e.g., "How long is a billion millimetres?").

- Use information from the above sources to create problems for their classmates to solve. Students are asked to estimate then use technology to check answers.

- Include print resources such as the Canadian Global Almanac, the Guiness Book of World Records, World Atlas and the Top Ten of Everything. Use children literature such as: "If the World Were a Village" by David J. Smith, or "On Beyond a Million" by David Schwartz, to provide a context for large numbers to create and solve problems.

- Have students perform internet searches for data relating to any topic of interest, such as sports, money or populations. Useful Internet sources include: Statistics Canada, Canada Population Clock, World Population Clock, Top Ten of Everything. Students can also explore the number of responses ("hits") they get when searching for information on the Internet.

Suggested Activities

- Provide students with appropriate data and ask him/her to determine how much farther away Jupiter is from Earth than from Mars.

- Ask students to create a variety of “outlandish” problems involving lengths. For example:
 - How many toothbrushes are required to make a line that is 2 km long?
 - How many pennies must be lined up to make a kilometre?

- Have students create problems based on information provided, such as the following:

<table>
<thead>
<tr>
<th>Population 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>World 6 767 805 208</td>
</tr>
<tr>
<td>China 1 338 612 968</td>
</tr>
<tr>
<td>United States 307 212 123</td>
</tr>
<tr>
<td>Japan 127 078 679</td>
</tr>
<tr>
<td>Germany 82 509 367</td>
</tr>
<tr>
<td>Canada 32 440 970</td>
</tr>
</tbody>
</table>
SCO: **N2: Solve problems involving large numbers, using technology.**

[ME, PS, T]

Assessment Strategies

- Have students look at area of countries in the world and draw conclusions/comparisons with Canada. Students present their findings in the form of a project using technology/graphs/illustrations.
- Provide students with problems involving large numbers and have them solve them, explaining their approach and which operations were used.
- Have students choose two types of careers in entertainment (professional athletes, actors, singers). Have them research the top 5 salaries in each career. Have them generate questions for others to solve and include an answer key. This can be presented in the form of a project.
- Give students a virtual amount of money to spend (i.e., spend a million dollars or a billion) and have them research from the internet, catalogues etc. items they would buy to make the amount. Students could create a poster or other display to communicate their spending.
SCO: **N3:** Demonstrate an understanding of factors and multiples by:
- determining multiples and factors of numbers less than 100
- identifying prime and composite numbers
- solving problems involving multiples.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[T] Technology</td>
<td>[V] Visualization</td>
<td>[R] Reasoning</td>
<td></td>
</tr>
</tbody>
</table>

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
</table>
| **N3** Apply mental mathematics strategies and number properties, such as: skip counting from a known fact; using doubling or halving; using patterns in the 9s facts; using repeated doubling or halving to determine answers for basic multiplication facts to 81 and related division facts. | **N3** Demonstrate an understanding of factors and multiples by:
- determining multiples and factors of numbers less than 100
- identifying prime and composite numbers
- solving problems involving multiples. | **N1** Determine and explain why a number is divisible by 2, 3, 4, 5, 6, 8, 9 or 10, and why a number cannot be divided by 0. |

Elaboration

Multiples of a whole number are the products of that number and any other whole number. To find the first four multiples of 3, multiply 3 by 1, 2, 3, and 4 to get the multiples 3, 6, 9, 12. Multiples of a number can also be found by skip counting by that number.

Factors are numbers that are multiplied to get a product (3 and 4 are factors of 12). The factors for a number can be found by dividing the number by smaller numbers and looking to see if there is a remainder of zero. At this point students should also recognize that:
- the factors of a number are never greater than the number;
- the greatest factor is always the number itself; the least factor is one;
- the second factor is always half the number or less;
- the multiple of a number always has that number as a factor.

To help students understand the meanings for the terms “factor” and “multiple” students could explore these concepts and write their own definition (e.g., \(factor \times factor = multiple \)).

A **prime** number is defined as a number which has only 2 factors: 1 and itself (e.g., 29 only has factors of 1 and 29 is therefore prime). Students should recognize that the concept of prime numbers applies only to whole numbers. A "**composite**" number is a number with more than two factors and includes all non-prime numbers other than one and zero (e.g., 9 has factors of 1, 3, 9). It is important for students to realize that 0 and 1 are not classified as a prime or composite numbers. The number “one” has only one factor (itself).

Zero is not prime because it has an infinite number of divisors and it is not composite because it cannot be written as a product of two factors that does not include 0.

Although students should have strategies for determining whether or not a number is prime, it is not essential for them to be able to quickly recognize prime numbers. However, students should be able to readily identify even numbers (other than 2) as non-primes (composites) as they will have a minimum of three factors: 1, 2 and the number itself.

Students should be encouraged to accurately use language such as multiple, factor, prime and composite. As well, encourage students to explore numbers and become familiar with their composition.
SCO: **N3: Demonstrate an understanding of factors and multiples by:**
- determining multiples and factors of numbers less than 100
- identifying prime and composite numbers
- solving problems involving multiples.

[PS, R, V]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:
- Identify multiples for a given number and explain the strategy used to identify them.
- Determine all the whole number factors of a given number using arrays.
- Identify the factors for a given number and explain the strategy used, e.g., concrete or visual representations, repeated division by prime numbers or factor trees.
- Provide an example of a prime number and explain why it is a prime number.
- Provide an example of a composite number and explain why it is a composite number.
- Sort a given set of numbers as prime and composite.
- Solve a given problem involving factors or multiples.
- Explain why 0 and 1 are neither prime nor composite.

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:
- Unit 2, Lesson 3, pp. 55-58
- Unit 2, Lesson 4, pp. 59-62
- Unit 2, Lesson 5, pp. 63-66
- Unit 2, Game, p. 67
- Unit 2, Lesson 6, pp. 68, 69
SCO: N3: Demonstrate an understanding of factors and multiples by:
- determining multiples and factors of numbers less than 100
- identifying prime and composite numbers
- solving problems involving multiples.
[PS, R, V]

Instructional Strategies
Consider the following strategies when planning lessons:

- Have students determine the factors of a number by arranging square tiles into as many different arrays (rectangles) as possible. Record the length and width of each rectangle. For example, if 12 tiles were used, the rectangles would be 1 by 12, 2 by 6, and 3 by 4. These are the factor pairs for 12. Have students record their rectangles/ factor partners on grid paper. Students should discover that some numbers only have one rectangle. This is an effective approach to introducing prime numbers.

- Have students investigate other numbers to find their factor pairs. Students may use organized lists to determine factors (i.e., begin with 1 and the number itself, then 2 or the next possible factor and its factor partner, etc.)

- Have students factor odd composite numbers (e.g., 33, 39). Students sometimes mistake these for prime as they do not readily see how they are factored.

- Have students use various Cuisenaire® rods or connected base ten unit cubes on a metre stick to find multiples of a number. Have students list the multiples found and relate the patterns to the times table.

- Have students explore other strategies such as factor trees to determine prime and composite numbers.

Suggested Activities

- Explore the sieve of Eratosthenes to identify the prime numbers to 100. On a hundreds chart, have the students begin by circling the first prime number, 2, and then cross out all the multiples of 2 (composite numbers). Circle the next prime number, 3, and cross out all of its multiples. Students then proceed to the next number that has not been crossed off and repeat the procedure. At the end of the process the circled numerals will be the prime numbers up to 100. Discuss any patterns they notice.

- Have students express even numbers greater than 2 in terms of sums of prime numbers. (Sample answers may include 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, ..., 48 = 43 + 5, 50 = 47 + 3, ...). Explore this idea further by asking if every even number greater than 2 can be written as the sum of 2 primes (Goldbach’s Conjecture).

- Ask students to name numbers with a given amount of factors (e.g., numbers with 6 factors: 12, 18, 20, etc.).

- Have students use the constant function on their calculators to explore multiples of a number. They may also use calculators to systematically test for factors of a number: ÷ 1, ÷ 2, ÷ 3, ÷ 4, etc.
SCO: N3: Demonstrate an understanding of factors and multiples by:
- determining multiples and factors of numbers less than 100
- identifying prime and composite numbers
- solving problems involving multiples.

[PS, R, V]

Assessment Strategies

- Ask students to express 36 as the product of two factors in as many ways as possible.
- Have small groups of students find the number less than 50 (or 100) that has the most factors. Ensure students can explain their process and justify their answer.
- Have students show all the factors of 48 by drawing or colouring arrays on square grid paper.
- Ask students if it is possible to list all of the multiples of 12? Explain their reasoning.
- Have students list all of the factors of 8 and some of the multiples of 8.
- Ask students to explain, without dividing, that 2 cannot be a factor of 47.
- Ask students to identify a number with 5 factors.
- Ask students to find 3 pairs of prime numbers that differ by two (e.g., 5 and 7).
- Ask students: Why is it easy to know that certain large numbers (e.g., 4283495) are not prime, even without factoring them?
- Tell the students that the numbers 2 and 3 are consecutive numbers, both of which are prime numbers. Ask: Why can there be no other examples of consecutive prime numbers?
- Have students use a computer or calculator to help them determine the prime numbers up to 100. Ask them to prepare a report describing as many features of their list as they can.
- Have students draw diagrams (such as rectangles or factor rainbows) to show why a given number is or is not prime (e.g., 10, 17, 27).
SCO: **N4: Relate improper fractions to mixed numbers.**

[CN, ME, R, V]

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>N7 Demonstrate an understanding of fractions by using concrete and pictorial representations to: create sets of equivalent fractions; compare fractions with like and unlike denominators.</td>
<td>N4 Relate improper fractions to mixed numbers.</td>
<td>N5 Demonstrate an understanding of adding and subtracting positive fractions and mixed numbers, with like and unlike denominators, concretely, pictorially and symbolically (limited to positive sums and differences).</td>
</tr>
</tbody>
</table>

Elaboration

In Grade 6, students extend their understanding of fractions to learn that an **improper fraction** represents a fraction greater than or equal to one. Through the use of models, students should discover that fractions with the numerator greater than their denominator are greater than one (e.g., \(\frac{5}{3}, \frac{6}{2}, \frac{7}{6} \)). It is important for students to understand that an improper fraction can also be expressed as a **mixed number** which is a whole number and a **proper fraction** (e.g., \(1 \frac{1}{4} \)).

Students should fluently move between the mixed number and improper fraction formats of a number. Rather than only applying a rule to move from one format to the other, students should be encouraged to focus on the meaning. For example, since \(\frac{14}{3} \) is 14 thirds and it takes 3 thirds to make 1 whole, 12 thirds would equal 4 wholes, so \(\frac{14}{3} \) represents 4 wholes and another 2 thirds of another whole or \(4 \frac{2}{3} \). Often it is easier for students to grasp the magnitude of mixed numbers than improper fractions. For example, a student may know that \(4 \frac{1}{3} \) is a bit more than 4, may not have a good sense of the size of \(\frac{13}{3} \).

Students should be able to place mixed numbers and improper fractions on a number line easily when they have **benchmarks** to use such as: closer to zero, close to one half, closer to one, etc. Having these benchmarks helps students visualize the placement and order of these fractions. The concept of equivalent fractions that students learned in grade 5 will also be helpful in developing additional benchmarks.

![Number Line](https://via.placeholder.com/150)

6 0 8 2 3 4 5

It is important that students have an opportunity to explore that fractions are connected to multiplication and division through a problem solving context and the use of a variety of models. Students should discover that dividing the numerator by the denominator is a procedure that can be used to change an improper fraction to a mixed number. It would be inappropriate just to tell students to divide the denominator into the numerator to change an improper fraction to a mixed number before they develop the conceptual understanding for this.
SCO: **N4: Relate improper fractions to mixed numbers.**
[CN, ME, R, V]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:

- Demonstrate using models that a given improper fraction represents a number greater than 1.
- Express improper fractions as mixed numbers.
- Express mixed numbers as improper fractions.
- Place a given set of fractions, including mixed numbers and improper fractions, on a number line and explain strategies used to determine position.

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:

- Unit 5, Lesson 1, pp. 162-165
- Unit 5, Lesson 2, pp. 166-169
- Unit 5, Game, p. 170
- Unit 5, Lesson 3, pp. 171-175
- Unit 5, Lesson 6, pp. 184, 185
- Unit 5, Unit Problem, pp. 196, 197
SCO: N4: Relate improper fractions to mixed numbers.
 [CN, ME, R, V]

Instructional Strategies
Consider the following strategies when planning lessons:

- Have students explore improper fractions and mixed numbers in a variety of ways and use different models. Some examples are:

 - Pattern blocks
 \[
 \frac{1}{6} = \frac{7}{6}
 \]
 - Fraction circles
 \[
 \frac{1}{4} = \frac{5}{4}
 \]
 - Cuisenaire® rods
 \[
 \frac{1}{3} = \frac{4}{3}
 \]
 - Double Number lines

- Have students use pattern blocks and have students build and count fractional parts and continue beyond a whole. \(\frac{1}{3}, \frac{2}{3}, \frac{3}{3}, \frac{4}{3}, \frac{5}{3} \), etc. Ask them to show another way to represent the improper fractions (e.g., \(\frac{5}{3} = \frac{3}{2} \)). Gradually transition to doing this activity without the pattern blocks (or other models).

- Provide students with frequent opportunities to use number lines (including double number lines) to explore the placement of mixed numbers and improper fractions. Ensure students are able to explain their strategy focusing on the use of benchmarks.

- Have students model \(\frac{9}{4} \) and tell how many groups of 4 are in 9. For example;

 - 1st group of 4
 - 2nd group of 4
 - \(\frac{1}{4} \) of a group of 4

Suggested Activities

- Ask students to model mixed numbers and improper fractions in various ways (e.g., \(\frac{3}{4} = \frac{7}{4} \)).

- Have students determine what fraction the blue rhombus represents if the hexagon is the whole. When this task is complete have the students explain using the pattern blocks what another name for \(\frac{14}{3} \) is?

- Have students solve problems such as: Jamir has 15 quarters in his pocket. How many whole dollars does he have?

- Create a set of equivalent mixed number and improper fraction cards and distribute a card to each student. Students need to find their equivalent partner. Then have students line up by pairs in ascending order (a temporary number line on the floor might be helpful for students). This activity should be done after students have had opportunity to develop their understanding with models.
SCO: **N4: Relate improper fractions to mixed numbers.**
[CN, ME, R, V]

Assessment Strategies

- Ask students: If 14 people at a party each want $\frac{1}{3}$ of a pizza, how many pizzas would be needed?
- Ask students to use coloured squares to show why $3\frac{1}{3} = \frac{10}{3}$. Observe whether or not they make wholes of 3 (or 6 or 9...) squares.
- Provide students with several mixed numbers and improper fractions that are equivalent (e.g., $2\frac{3}{4} = \frac{11}{4}$). Ask them to show if the numbers are equal and to explain their thinking concretely, pictorially and symbolically.
- Provide students with several mixed numbers and improper fractions. Have students place the numbers on an open number line to demonstrate their relative magnitude.
- Write and model a mixed number, with the same denominator, that is greater than $\frac{3}{3}$, but less than $\frac{6}{3}$.

SCO: **N5: Demonstrate an understanding of ratio, concretely, pictorially and symbolically.**

[C, CN, PS, R, V]

<table>
<thead>
<tr>
<th>Communication</th>
<th>Problem Solving</th>
<th>Connections</th>
<th>Mental Math and Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C]</td>
<td>[PS]</td>
<td>[CN]</td>
<td>[ME]</td>
</tr>
<tr>
<td>[T] Technology</td>
<td>[V] Visualization</td>
<td>[R] Reasoning</td>
<td></td>
</tr>
</tbody>
</table>

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>N7 Demonstrate an understanding of fractions by using concrete and</td>
<td>N5 Demonstrate an understanding of ratio, concretely, pictorially and</td>
<td>N3 Solve problems involving percents from 1% to 100%.</td>
</tr>
<tr>
<td>pictorial representations to: create sets of equivalent fractions;</td>
<td>symbolically.</td>
<td></td>
</tr>
<tr>
<td>compare fractions with like and unlike denominators.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elaboration

Ratios and fractions are both comparisons. A ratio is a way to represent comparisons of two numbers or quantities. It can be used to compare part-to-part in any order or part-to-whole. Ratios may be expressed in words, in number form with a colon between the two numbers, or as a fraction (if it represents part-to-whole).

For example, the ratio of 3 boys compared to 2 girls can be expressed as “three to two”, 3 to 2, 3:2, or \(\frac{3}{2}\). If the ratio is comparing a part of a set to the whole set, then fractions can also be used (e.g., the number of boys to the whole group would be \(\frac{3}{5}\)).

The items and the order in which they are being compared must always be stated. For example:

- Faces to hearts is 4:1
- Hearts to faces is 1:4
- Faces to all is 4:5
- All to hearts is 5:1

Ratios may be generated in geometric, numerical, and measurement situations. Some examples:

Geometric situations:
- the ratio of the number of sides in a hexagon to the number of sides in a square (6:4);
- the ratio of the number of vertices to the number of edges in a rectangular prism (8:12);
- the ratio of the number of vertices in a hexagon to the number of sides (6:6).

Numerical situations:
- the ratio comparing the value of a quarter to that of a dime (25:10);
- the ratio comparing the number of multiples of 2 to the multiples of 4 for numbers from 1 to 100 (2:1 or 50:25).

Measurement situations:
- the ratio of perimeter to side length of a square (4:1);
- the ratio of describing the enlargement factor on a photocopy (3:2).

The concept of rate, as a ratio, will be introduced in Grade 8.

Equivalent ratios can be explored in relation to equivalent fractions. This can be accomplished engaging students with problems within a real-world context. Encouraging students to write and solve their own problems will help them construct and consolidate their understanding of equivalent ratios.
SCO: N5: Demonstrate an understanding of ratio, concretely, pictorially and symbolically.
[C, CN, PS, R, V]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:
- Provide a concrete or pictorial representation for a given ratio.
- Write a ratio from a given concrete or pictorial representation.
- Express a given ratio in multiple forms, such as “three to five”, 3:5, 3 to 5, or \(\frac{3}{5} \).
- Identify and describe ratios from real-life contexts and record them symbolically.
- Explain the part/whole and part/part ratios of a set, e.g., for a group of 3 girls and 5 boys, explain the ratios 3:5, 3:8 and 5:8.
- Solve a given problem involving ratio.

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:
- Unit 5, Lesson 4, pp. 176-179
- Unit 5, Lesson 5, pp. 180-183
- Unit 5, Lesson 6, pp. 184, 185
- Unit 5, Unit Problem, pp. 196, 197
SCO: N5: Demonstrate an understanding of ratio, concretely, pictorially and symbolically. [C, CN, PS, R, V]

Instructional Strategies
Consider the following strategies when planning lessons:

- Use counters, other simple models, or the students themselves to introduce the concept of ratio as a comparison between two numbers.
 For example, in a group of 3 boys and 2 girls:
 - 3:2 tells the ratio of boys to girls (part-to-part);
 - 3:5 tells the ratio of boys to the total group (part-to-whole);
 - 2:5 tells the ratio of girls to the total group (part-to-whole);
 - 2:3 tells the ratio of girls to boys (part-to-part);
 - Students should read “3:2” as “3 to 2” or “3 ___ for every 2 ____.”

- Explore ratios that occur in everyday situations (e.g., the ratio of water to concentrate to make orange juice is 3:1 or “3 to 1”).

- Use children’s literature, such as If You Hopped Like a Frog! by David Schwartz, to provide a context for students to explore ratio.

- Have students use colour tiles, pattern blocks, linking chains, or other models to represent ratio comparisons.

Suggested Activities

- Provide students with a recipe for lemonade: 4 cups of water, 1 cup of lemon juice, 1 cup of sugar. Ask students to write about the various ratios that can be drawn from this data.

- Have students poll their classmates to determine what pets they have (or other topics such as eye colour, shoe size, hair colour, etc.). Ask them to write part-to-part and part-to-whole ratio comparisons. Require students to write their ratios in words, in “colon” form, and in fraction form (for part-to-whole only).

- Have students model two situations that can be described by the ratio 3:4. Specify that the situations must involve a different total number of items.

- Ask students to find the following body ratios, comparing results with others:
 - wrist size: ankle size
 - wrist size: neck size
 - head height: full height

- Have students show a given ratio pictorially or concretely. For example, to show 4:5 (part/part), one possible solution would be: ☐ ☐ ☐ ☐ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ .

- Ask students to write a number of ratios that relate to sport or other real world situations. For example, compare the number of players on the ice in hockey compared to the number on a soccer field.

- Encourage students to write and solve each other’s problems.
SCO: **N5: Demonstrate an understanding of ratio, concretely, pictorially and symbolically.**

[C, CN, PS, R, V]

Assessment Strategies

- Ask students to select up to 20 tiles of different colours so that pairs of colours show the following ratios: 4 to 3, 2:1, $\frac{1}{3}$.
- Give students the following information and ask them to write and read ratio comparisons. Have students explain their ratios. Students should be able to express their ratios as fractions, words, and numbers.

 4 cats 3 goldfish 2 hamsters

- Ask students to make a drawing that shows a ratio situation (e.g., for every one pencil, there are three pieces of paper). Ask them to write ratios to describe what the picture shows and describe the different ratios it represents.

- Tell students that the ratio of boys to the total number of students in the class is 13:28. How many girls are in the class?

- Ask students what would the ratio of legs to heads be in a group of bears? of people? of spiders?

- Ask students to explain to why they might describe the ratio below as 4:1 (all to girls) or as 1:4 (girls to all)? Are there other ratios that can be used to describe what is given? (B = boy; G = girl)

 B B B G
SCO: **N6: Demonstrate an understanding of percent (limited to whole numbers) concretely, pictorially and symbolically.**

[C, CN, PS, R, V]

<table>
<thead>
<tr>
<th>Communication</th>
<th>Problem Solving</th>
<th>Connections</th>
<th>Mental Math and Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C]</td>
<td>[PS]</td>
<td>[CN]</td>
<td>[ME]</td>
</tr>
<tr>
<td>Technology</td>
<td>Visualization</td>
<td>Reasoning</td>
<td></td>
</tr>
</tbody>
</table>

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>N9</td>
<td>N6</td>
<td>N3</td>
</tr>
<tr>
<td>Relate decimals to fractions and fractions to decimals (to thousandths).</td>
<td>Demonstrate an understanding of percent, (limited to whole numbers) concretely, pictorially and symbolically.</td>
<td>Solve problems involving percents from 1% to 100%.</td>
</tr>
</tbody>
</table>

Elaboration

Percent is a part-to-whole ratio that compares a number to 100. “Percent” means "out of 100" or "per 100". Students should understand that percent on its own does not represent a specific quantity. For example, 90% might represent 9 out of 10, 18 out of 20, 45 out of 50, and 90 out of 100.

Percent can always be written as a decimal or vice versa. For example, 26% is the same as 0.26, and both mean 26 hundredths or $\frac{26}{100}$.

Students should recognize:
- situations in which percent is commonly used;
- diagrams, showing parts of a set, whole, or measure that represent various percentages (e.g., 2%, 35%);
- the relationship between the percent and corresponding decimals and ratios (e.g., 48%, 0.48, 48:100);
- the percent equivalents for common fractions and ratios such as $\frac{1}{4} = 25\%, \frac{1}{2} = 50\%$, and $\frac{3}{4} = 75\%$.

Students do **not** need to compute with percentages or work with percentages greater than 100 in grade 6.

Number sense for percent should be developed through the use of these basic **benchmarks**:
- 100% is all;
- 50% is half;
- 25% is a quarter; 75% is three quarters;
- 33% is a little less than a third; 67% is a little more than two thirds.

It is important for students to use a variety of representations of percent to help deepen their understanding. For example, 25% can be represented as shown below.

![Percent representation](image-url)
SCo: **N6: Demonstrate an understanding of percent (limited to whole numbers) concretely, pictorially and symbolically.**

[C, CN, PS, R, V]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:
- Explain that "percent" means "out of 100."
- Explain that percent is a ratio out of 100.
- Use concrete materials and pictorial representations to illustrate a given percent.
- Record the percent displayed in a given concrete or pictorial representation.
- Express a given percent as a fraction and a decimal.
- Identify and describe percents from real-life contexts, and record them symbolically.
- Solve a given problem involving percents.

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:
- Unit 5, Lesson 7, pp. 96-99
- Unit 5, Lesson 8, pp. 190-193
- Unit 5, Unit Problem, pp. 196, 197
SCO: **N6: Demonstrate an understanding of percent (limited to whole numbers) concretely, pictorially and symbolically.**
[C, CN, PS, R, V]

Instructional Strategies

Consider the following strategies when planning lessons:

- Provide students with many opportunities to work with partially shaded hundreds grids, determining the decimal, fraction, ratio, and percent that is shaded.
- Make charts, including symbolic representations, for fractions, decimals, and percents that are equal.
- Use virtual manipulatives available on the Internet and Interactive whiteboard software.
- Have students predict percentages, give their prediction strategies, and then check their predictions. For example, ask them to estimate the percentage of:
 - each colour of Bingo chips, if a total of 100 blue, red, and green chips are shown on an overhead for 10 seconds;
 - a hundredths grid that is shaded in to make a picture;
 - red counters when 50 two coloured counters are shaken and spilled.
- Use a double number line as a useful tool to model and solve simple percent equivalencies and problems. Extend this to include fraction equivalencies as well.

<table>
<thead>
<tr>
<th>0%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>?</td>
<td>0.50</td>
<td>?</td>
<td>1.0</td>
</tr>
<tr>
<td>\frac{1}{4}</td>
<td>\frac{1}{2}</td>
<td>\frac{3}{4}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suggested Activities

- Ask students to draw a design on a hundred grid and describe the percent that is shaded.
- Have students create a pencil crayon quilt made of patches of various colours. They can describe the approximate or exact percentages of each colour within the patch and then estimate the percent of the total quilt that is each colour.
- Tell students that Jane is covering her floor with tiles. The whole floor will take $84 worth of tiles. How much will she have spent on tiles when 25% of her floor is covered? Use a number line to help model.

<table>
<thead>
<tr>
<th>0</th>
<th>42</th>
<th>84</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>25%</td>
<td>50%</td>
</tr>
</tbody>
</table>

- Have students collect examples of situations from newspapers, flyers, or magazines in which percent is used and have them make a collage for a class display.
- Have students estimate the percent of time students spend each day doing certain activities (e.g., attending school, physical activity, eating, sleeping, etc.).
- Have students estimate and then determine the percentage of pages in a magazine that have advertisements on them.
SCO: **N6: Demonstrate an understanding of percent (limited to whole numbers) concretely, pictorially and symbolically.**

[C, CN, PS, R, V]

Assessment Strategies

- Ask students:
 - a. Which is the least? The most? Explain your answer.
 - \(\frac{1}{20}, 20\%, 0.02\)
 - b. Which one doesn’t belong? Explain your choice:
 - \(\frac{3}{4}, 0.75, 0.34, 75\%\)

- Ask students what percent of a metre stick is 37 cm?
- Have students examine a set of object and describe different ratio and percent equivalents.
- Have students name percents that indicate:
 - almost all of something
 - very little of something
 - a little less than half of something

- Ask students what is incorrect about each of the following diagrams:
 - Have students justify their answers.
 - a. [Diagram a]
 - b. [Diagram b]
SCO: N7: Demonstrate an understanding of integers, concretely, pictorially and symbolically.
[C, CN, R, V]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[T] Technology</td>
<td>[V] Visualization</td>
<td>[R] Reasoning</td>
<td></td>
</tr>
</tbody>
</table>

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N7 Demonstrate an understanding of integers, concretely, pictorially and symbolically.</td>
<td>N6 Demonstrate an understanding of addition and subtraction of integers, concretely, pictorially and symbolically.</td>
</tr>
</tbody>
</table>

Elaboration

Negative numbers have been part of the day-to-day life of students through their experiences such as temperatures below zero. Students will be introduced to the set of integers which includes positive and negative whole numbers and zero.

The big ideas of integers that students should understand in grade 6 are:
- each negative integer is the mirror image of a positive integer with respect to the 0 mark therefore the same distance from zero;
- 0 is neither positive nor negative;
- negative integers are all less than any positive integer;
- a positive integer closer to zero is always less than a positive integer farther away from zero (e.g., +3 < +7);
- a negative integer closer to zero is always greater than a negative integer farther away from zero (e.g., -3 > -7).

Students should be encouraged to read -5 as “negative 5” rather than “minus 5,” to minimize confusion with the operation of subtraction. It is also important for students to recognize that positive integers do not always show the “+” symbol. If no symbol is shown, the integer is positive.

Students will have previously encountered negative integers in several of the above situations, but one of the most common contexts is a thermometer. To build on this informal understanding, it is beneficial to start with a vertical number line which resembles a thermometer.

Other useful contexts for considering negative integers are:
- temperatures;
- elevators which go both above and below ground (floors can have positive and negative labels);
- golf scores above and below par;
- money situations involving debits and credits;
- distance above and below sea level.

In prior grades, students will have compared numbers using the vocabulary of “greater than” and “less than”. In grade 6, students will be expected to represent these comparisons using the > and < symbols.

Addition and subtraction situations involving integers should only be explored informally as it is a grade 7 outcome.
SCO: **N7: Demonstrate an understanding of integers, concretely, pictorially and symbolically.**
[C, CN, R, V]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:
- Extend a given number line by adding numbers less than zero and explain the pattern on each side of zero.
- Place given integers on a number line and explain how integers are ordered.
- Describe contexts in which integers are used, e.g., on a thermometer.
- Compare two integers, represent their relationship using the symbols <, > and =, and verify using a number line.
- Order given integers in ascending or descending order.

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:
- Unit 2, Lesson 8, pp. 74-77
- Unit 2, Lesson 9, pp. 78-81
- Unit 2, Unit Problem, pp. 84, 85
SCO: N7: Demonstrate an understanding of integers, concretely, pictorially and symbolically.

[C, CN, R, V]

Instructional Strategies
Consider the following strategies when planning lessons:

- Provide students with an open number line to explore the placement of integers.
- Explore examples of situations where negative integers are used from various media.
- Have students divide a sheet of paper into 3 parts with the headings of Negative, Positive, and Zero. As situations arise throughout this outcome, have students record the situation under the headings which best describes it. For example, rise in temperature (positive), spending money (negative), freezing point (zero).
- Give each student a card with an integer number on it (ensure that the set of cards includes pairs of integers, such as +7, -7, and a card with zero). Have the person with the “zero” card stand at the front of the classroom in the middle. Have the rest of the students create a “human number line” placing them in order according to the card they were given.
- Use a thermometer (vertical number line) to compare integers and record the comparison symbolically (-8 < 5; 6 > -7; 4 < 9; -3 > -4).

Suggested Activities

- Have 10 students volunteer, to come to the front of the class. They are given an integer unknown to them, on a sticky note, stuck on their backs. The volunteers without talking must rearrange themselves in ascending by moving each other.
- Have students place a variety of integers at the appropriate places on a number line.
- Have students play the card game “integer war”, using the red cards for negative integers and the black cards as positive integers. Each student flips a card, the student holding the card with the highest value, wins both cards.
- Have students choose 10 cities and research the temperature for a specific date, enter the data into a table from warmest to coldest temperatures. Students may use a vertical number line to facilitate this task.
- Have students write an integer for each of the following situations:
 a. A person walks up 8 flights of stairs.
 b. An elevator goes down 7 floors.
 c. The temperature falls by 7 degrees.
 d. Josh deposits $110 dollars in the bank.
 e. The peak of the mountain is 1123 m above sea level.
- Have students investigate **opposite integers** by plotting points such as +5 and -5 on a number line. What do you notice about them? Why do you think number pairs such as -5 and +5 are called opposites?
SCO: N7: Demonstrate an understanding of integers, concretely, pictorially and symbolically.
[C, CN, R, V]

Assessment Strategies

- Ask students: How many negative integers are greater than -7?
- Tell students that a number is 12 jumps away from its opposite on a number line. Ask: What is the number?
- Have students explain why -4 and +4 are closer to each other than -5 and +5.
- Ask students to design a simple game for which positive and negative points might be awarded. Have the students play and keep track of their total scores.
- Ask students why is an integer never 11 away from its opposite on a number line?
- Have students flip over two playing cards (red cards could represent negative integers and black cards could represent positive integers). Record the comparison symbolically with numbers and the symbols > and <.
- Ask students to explain why it is true that:
 a. a negative number further from zero is less than a negative number that is close to zero;
 b. a negative number is always less than a positive number;
 c. a positive number is always greater than a negative number;
 d. integer opposites cancel each other out when they are combined.
SCO: **N8: Demonstrate an understanding of multiplication and division of decimals (1-digit whole number multipliers and 1-digit natural number divisors).**

[C, CN, ME, PS, R, V]

<table>
<thead>
<tr>
<th>Communication</th>
<th>Problem Solving</th>
<th>Connections</th>
<th>Mental Math and Estimation</th>
</tr>
</thead>
</table>

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>N5 Demonstrate an understanding of multiplication (2-digit by 2-digit) to solve problems.</td>
<td>N8 Demonstrate an understanding of multiplication and division of decimals (1-digit whole number multipliers and 1-digit natural number divisors).</td>
<td>N2 Demonstrate an understanding of the addition, subtraction, multiplication and division of decimals (for more than 1-digit divisors or 2-digit multipliers, the use of technology is expected) to solve problems.</td>
</tr>
</tbody>
</table>

Elaboration

Students will have had experience multiplying and dividing whole numbers in previous grades. The emphasis will continue to be on the understanding of these two operations rather than the mastery of one traditional algorithm. As students extend their learning to multiplying and dividing with decimals the use of estimation is essential to help students ensure the reasonableness of their answer. “When estimating, thinking focuses on the meaning of the numbers and the operations, and not on counting decimal places” (Van de Walle & Lovin, vol. 3, 2006, p. 125).

When considering multiplication by a decimal, students should recognize that, for example, 0.8 of something will be almost that amount, but not quite, and 2.4 multiplied by an amount will be double the amount with almost another half of it added on. It is important for students to realize that estimation is a useful skill in their lives and regular emphasis on real-life contexts should be provided. On-going practice in computational estimation is a key to developing understanding of number and number operations and increasing mental process skills. Although rounding has often been the only estimation strategy taught, there are others (many of which provide a more accurate answer) that should be part of a student's repertoire such as front-end estimation:

- **Multiplication:** 6×23.4 might be considered to be 6×20 (120) plus 6×3 (18) plus a little more for an estimate of 140, or $6 \times 25 = 150$.
- **Division:** Pencil and paper division involves front-end estimation. For, $424.53 \div 8$ (or), students should be able to estimate that 50×8 is 400, so the quotient must be a bit more than 50.

Students should be able to place missing decimals in products and quotients using estimation skills and not rely on a rule for “counting” the number of digits without understanding.

A connection should be made between multiplication and division. Multiplication can be used to estimate **quotients**. For example, 74.3 divided by 8. Have a student say the multiples of 8 that are closest to 74.3. Write out $8 \times 9 = 72$ and $8 \times 10 = 80$. Students should explain how they know the quotient is between 9 and 10. Ensure proper vocabulary when reading all numbers. This will assist students in making the connection between facts (e.g., 4×6 is similar to 4×0.6; 4 groups of 6 tenths $= 24$ tenths or 2.4).

Mental Math strategies will strengthen student understanding of this specific curriculum outcome. (Refer to pp. 122-171.)
SCO: N8: Demonstrate an understanding of multiplication and division of decimals (1-digit whole number multipliers and 1-digit natural number divisors).
[C, CN, ME, PS, R, V]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:
• Place the decimal point in a product using front-end estimation, e.g., for 15.205×4, think 15×4, so the product is greater than 60 m.
• Place the decimal point in a quotient using front-end estimation, e.g., for $25.83 \div 4$, think $24 \div 4$, so the quotient is greater than 6$.
• Correct errors of decimal point placement in a given product or quotient without using paper and pencil.
• Predict products and quotients of decimals using estimation strategies.
• Solve a given problem that involves multiplication and division of decimals using multipliers from 0 to 9 and divisors from 1 to 9.

This specific curriculum outcome is addressed in Math Makes Sense 6 in the following units:
• Unit 3, Lesson 2, pp. 92-94
• Unit 3, Lesson 3, pp. 95-98
• Unit 3, Lesson 4, pp. 99-102
• Unit 3, Lesson 5, pp. 103-107
• Unit 3, Lesson 6, pp. 108-111
• Unit 3, Lesson 7, pp. 112-114
• Unit 3, Game, p. 115
• Unit 3, Lesson 8, pp. 116, 117
• Unit 3, Unit Problem, pp. 120, 121
SCO: **N8:** Demonstrate an understanding of multiplication and division of decimals (1-digit whole number multipliers and 1-digit natural number divisors).

[C, CN, ME, PS, R, V]

Instructional Strategies
Consider the following strategies when planning lessons:

- Ensure students use proper vocabulary related to multiplication (factors, product) and division (divisor, dividend, quotient) that they have learned in previous grades.
- Have students look for benchmark decimals that are easy to multiply and divide. For example, Ask students why someone might estimate 516×0.48 by taking half of 500.
- Provide opportunities for students to create and solve missing factor and missing divisor/dividend problems, involving decimals, to support the connection between multiplication and division.
- Use the “area model” both concretely with base ten blocks and pictorially to represent multiplication and division before moving to the symbolic. For example, 2×3.6 could be modelled as:

```
   3.6

```

Suggested Activities

- Provide students with a number sentence that has decimals missing or misplaced in either the answer or the question. For example, $2.34 \times 6 = 1404$ a decimal is missing in the product. Have students determine where the decimal should be using estimation strategies such as “front-end”.
- Have students estimate each of the following and tell which of their estimates is closer and how they know: 3 videos games at $24.30/game OR 5 teen magazines at $8.89/magazine; 9 glasses of fruit smoothies at $2.59/glass OR 4 veggie pitas at $4.69/pita.
- Tell the students that it takes about 9 g of cookie dough to make one cookie. Renee checks the label on the package and finds she has 145.6 g of dough. About how many cookies can she make?
- Have students measure side lengths of objects in the classroom to the nearest tenth of a centimetre or hundredth of a metre and then estimate the area of those objects (e.g., side lengths of their desks, their textbooks or the top of tables).
- Have students solve problems which involve dividing the price for a pizza. For example, 4 people sharing a pizza for $14.56. Change the amount of people and the price of the pizza for more problems.
- Tell the students that the cashier told Samantha that her total for 3 kg of grapes at $3.39/kg was $11.97. How did Samantha use estimation to know that the cashier had made a mistake?
- Provide real-world problems involving multiplication and division of decimals where the multiplier/divisor are 1-digit whole numbers. For example, Jean works at Pizza Pie for $8.75/hour. Saturday he worked 8 hours. What were his earnings? Sunday he made $93.25, and was paid $9.00 per hour. How many hours did he work?
- Have students figure out how much they need to pay, if they went to the restaurant with three friends and the bill came to $26.88. Students should assume that each person pays their equal share.
SCO: N8: Demonstrate an understanding of multiplication and division of decimals (1-digit whole number multipliers and 1-digit natural number divisors).
[C, CN, ME, PS, R, V]

Assessment Strategies

- Tell students that you have multiplied a decimal by a whole number and the estimated product is 5.5. What might the two numbers be?
- Provide students with a supermarket checkout slip and tell them that it represents a family’s weekly groceries. Have students estimate the total amount spent per day or per month by that family.
- Ask students for an estimate of the total cost of 8 pens at $0.79 each. Ask what estimating strategy he/she used and if there is another way to easily estimate the answer.
- Have students estimate the mass of each egg in kilograms, if they know that the total mass of a half dozen eggs is 0.226 kg.
- Ask students to identify which of the following is the best estimate for 13.7 × 9 and explain why.

 13.0 × 9 4.0 × 9 15.0 × 9 14.0 × 10 10.0 × 9
SCO: **N9**: Explain and apply the order of operations, excluding exponents, with and without technology (limited to whole numbers).

[CN, ME, PS, T]

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>N9 Explain and apply the order of operations, excluding exponents, with and without technology (limited to whole numbers).</td>
<td></td>
<td>N2 Demonstrate an understanding of the addition, subtraction, multiplication and division of decimals to solve problems.</td>
</tr>
</tbody>
</table>

Scope and Sequence

Elaboration

Students should realize that the convention for order of operations is necessary in order to maintain consistency of results in calculations. It is important to provide students with situations in which they can recognize the need for the order of operations.

The purpose of the order of operations is to ensure that the same answer is reached regardless of who performs the calculations. When more than one operation appears in an expression or equation, the operations must be performed in the following order:
- operations in brackets first;
- divide or multiply from left to right whichever operation comes first;
- add or subtract from left to right whichever operation comes first.

The acronym, "BEDMAS", is a common memory device to recall the order of operations. It is important to stress that even though the “D” appears before the “M” and the “A” before the “S”, these pairs of operations are done in the order that they appear (multiplication or division, then addition or subtraction). The “E” represents exponents, however, this is not a concept that is expected of Grade 6 students. It may be helpful to have students develop their own method of recalling the order of operations.

Students should be taught that brackets may also be referred to as parentheses and can have different shapes: (), [], { }. The specialized meanings of each of these types will be explored in more depth in later grades and the focus in Grade 6 order of operations should be on using first type listed: (). Some calculators have brackets that can be entered during calculations and the use of this function could be used by students.

When solving multi-step problems, it is important for students to recognize when it is appropriate to use technology. Students should be encouraged to use mental math and computational skills as much as possible. Students should be able to solve many multi-step problems mentally, such as 50 × (12 ÷ 4).

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:
- Unit 2, Lesson 7, pp. 70-73
SCO: **N9**: Explain and apply the order of operations, excluding exponents, with and without technology (limited to whole numbers).
[CN, ME, PS, T]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:

- Demonstrate and explain with examples why there is a need to have a standardized order of operations.
- Apply the order of operations to solve multi-step problems with or without technology, e.g., computer, calculator.
SCO: N9: Explain and apply the order of operations, excluding exponents, with and without technology (limited to whole numbers).

[CN, ME, PS, T]

Instructional Strategies
Consider the following strategies when planning lessons:

- Have students work in groups to answer the following: $8 - 2 \times 4 + 10 \div 2$, then share their answers. Discuss why some found different answers and the need for rules so we all get the same answer. This could be extended by asking students where brackets could be placed to get the largest or smallest possible answer.
- Apply the rules for order of operations by modeling a variety of problem solutions. Students can check to determine whether their calculator follows the rules for order of operations. Depending on their type, calculators may yield different results.
- Have students become human models of the numbers in a problem and others students could become brackets as necessary to get an answer that was previously chosen. Students need to move so that the answer will be produced.
- Ask students to write a number sentence for the following: the total cost for a family with two parents and three children for theatre tickets if children’s tickets cost $9 and adult tickets cost $12. When students write a number sentence such as, $3 \times 9 + 2 \times 12$, ask if this solution makes sense:

$$3 \times 9 = 27 + 2 = 29 \times 12 = 348$$

Suggested Activities

- Have students write number sentences for the following problems and solve them using the order of operations. Consider solving the number sentences for a) and b) by ignoring the order of operations. Would the solution make sense in terms of the problem? Discuss.
 a. Ms. Janes bought the following for her project: 5 sheets of pressboard at $9 a sheet, 20 planks at $3 each, and 2 litres of paint at $10. What was the total cost?
 b. Three times the sum of $35 and $49 represents the total amount of Jim’s sales on April 29. When his expenses, which total $75, were subtracted, what was his profit?
- Tell students that Billy had to answer the following skill-testing questions to win the contest prize. What are the winning answers? a. $234 \times 3 - 512 \div (2 \times 4)$ b. $18 + 8 \times 7 - 118 \div 4$
 Billy was told that the correct answer for “b” is 16, but Billy disagreed. What did the contest organizers do in solving the question which caused them to get 16 for the answer? Explain why you think they made that error.
- Ask students to explain why it is necessary to know the order of operations to compute $4 \times 7 - 3 \times 6$. Ask them to compare the solution of the previous problem with the solution of $4 \times (7 - 3) \times 6$. Ask whether the solutions are the same or different and why.
- Provide students with a set of numbers and a target solution. Have students explore and discover where they can place operations symbols and brackets to achieve the solution. For example:

<table>
<thead>
<tr>
<th>Numbers</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 6, 3, 4</td>
<td>11</td>
</tr>
<tr>
<td>3, 6, 3, 4</td>
<td>108</td>
</tr>
<tr>
<td>3, 6, 3, 4</td>
<td>6</td>
</tr>
</tbody>
</table>

Possible answers: $3 + (6 + 3) \times 4$ $(3 + 6) \times (3 \times 4)$ $(3 \times 6) - (3 \times 4)$
SCO: **N9:** Explain and apply the order of operations, excluding exponents, with and without technology (limited to whole numbers).
[CN, ME, PS, T]

Assessment Strategies

- Tell students that as a result of some faulty keys, the operation signs in these problems did not print. Use the information which is supplied to help determine which operations were used.
 a. \((7 \div 2) \times 12 = 2\)
 b. \((12 \div 4) \div 4 = 7\)
- Tell students that because the shift key on the keyboard did not work, none of the brackets appeared in the following problems. If the student has the right answers to both problems, identify where the brackets must have been.
 a. \(4 + 6 \times 8 - 3 = 77\)
 b. \(26 - 4 \times 4 - 2 = 18\)
- Have students use their calculator to answer the following question: Chris found the attendance reports for hockey games at the stadium to be 2787, 2683, 3319, 4009, 2993, 3419, 4108, 3539, and 4602. If tickets were sold for $12 each, and expenses amounted to $258 712, what was the profit for the stadium? Have the students write out the equation to demonstrate their understanding of order of operations.
- Have students create their own multi-operation expression, including brackets, and show its solution.
- Have students solve an order of operations expression and then describe what could have gone wrong if the order of operations steps were not followed (e.g., what might be an incorrect solution).
SCO: **PR1**: Demonstrate an understanding of the relationships within tables of values to solve problems.
[C, CN, PS, R]

SCO: **PR2**: Represent and describe patterns and relationships using graphs and tables.
[C, CN, ME, PS, R, V]

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR1 Determine the pattern rule to make predictions about subsequent terms (elements).</td>
<td>PR1 Demonstrate an understanding of the relationships within tables of values to solve problems. PR2 Represent and describe patterns and relationships using graphs and tables.</td>
<td>PR1 Demonstrate an understanding of oral and written patterns and their equivalent linear relations. PR2 Create a table of values from a linear relation, graph the table of values, and analyze the graph to draw conclusions and solve problems.</td>
</tr>
</tbody>
</table>

Elaboration

Mathematics is often referred to as the study of patterns, as they permeate every mathematical concept and are found in everyday contexts. The various representations of patterns including physical models, table of values, algebraic expressions, and graphs, provide valuable tools in making generalizations of mathematical relationships.

Patterns include repeating patterns and growing patterns. An example of a repeating pattern is 1, 2, 2, 1, 2, 2, 1, 2...). Growing patterns include arithmetic (adding or subtracting the same number each time) and geometric (multiplying or dividing the same number each time) situations. Patterns using concrete and pictorial representations can be written using numbers, where numbers represent the quantity in each step of the pattern.

A **table of values** shows the relationship between pairs of numbers. Students should use tables to organize and graph the information that a pattern provides. When using tables, it is important for students to realize that they are looking for the relationship between two variables (term number and term). The **relationship** tells what you do to the previous term to get the next term. The **pattern rule** is what you do to the term number to get the term value. For example, the number pattern 1, 3, 5, 7, 9,...has the relationship where each number increases by two. The rule for this pattern is $2n - 1$.

<table>
<thead>
<tr>
<th>Term number (n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term (2n-1)</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

The analysis of graphs should include creating "stories" or real-world situations that describe the relationship depicted. Similarly, when constructing graphs, a story that matches the changes in related quantities should be included. When students are describing a relationship in a graph they should use language like: as this increases that decreases; as one quantity drops, the other also drops, etc.

Students should be able to create a table of values for a given linear relationship and be able to match graphs and sets of linear relationships. This concept is connected to outcomes SP1 and SP3.
SCO: **PR1:** Demonstrate an understanding of the relationships within tables of values to solve problems.
[C, CN, PS, R]

SCO: **PR2:** Represent and describe patterns and relationships using graphs and tables.
[C, CN, ME, PS, R, V]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:

PR1
- Generate values in one column of a table of values, given values in the other column and a pattern rule.
- State, using mathematical language, the relationship in a given table of values.
- Create a concrete or pictorial representation of the relationship shown in a table of values.
- Predict the value of an unknown term using the relationship in a table of values and verify the prediction.
- Formulate a rule to describe the relationship between two columns of numbers in a table of values.
- Identify missing elements in a given table of values.
- Identify errors in a given table of values.
- Describe the pattern within each column of a given table of values.
- Create a table of values to record and reveal a pattern to solve a given problem.

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:
- Unit 1, Lesson 1, pp. 6-10
- Unit 1, Lesson 2, pp. 11-15
- Unit 1, Lesson 3, pp. 16, 17
- Unit 1, Game, p. 18
- Unit 1, Lesson 4, pp. 19-23
- Unit 1, Unit Problem, pp. 42, 43

PR2
- Translate a pattern to a table of values and graph the table of values (limit to linear graphs with discrete elements).
- Create a table of values from a given pattern or a given graph.
- Describe, using everyday language, orally or in writing, the relationship shown on a graph.

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:
- Unit 1, Lesson 4, pp. 19-23
- Unit 1, Lesson 6, pp. 29-32
- Unit 1, Unit Problem, pp. 42, 43
SCO: PR1: Demonstrate an understanding of the relationships within tables of values to solve problems.
[C, CN, PS, R]
SCO: PR2: Represent and describe patterns and relationships using graphs and tables.
[C, CN, ME, PS, R, V]

Instructional Strategies
Consider the following strategies when planning lessons:

- Develop a table with incorrect values and a correct pattern rule. Have students become “Data Detectives”, finding and correcting the errors.
- Have students create the following pattern with counters, develop a table of values to display the information, write the relationship, and then graph it. Have students predict the value of unknown terms.
- Provide students with graphs to analyze and have them create corresponding tables of values. Have them describe the relationship shown in the graph orally or in writing.

Suggested Activities

- Tell students about a family vacation situation. The family drove for 5 hours the first day and covered 450 km. The second day the family went 8 hours and 720 km. The last day they arrived in Las Vegas after 6 hours (540 km). Have students create a table of values for this data, describe the pattern, and make a graph.
- Have students fill in the blanks of the tables below and then state the relationship and write the rule.

<table>
<thead>
<tr>
<th>Numerator</th>
<th>?</th>
<th>2</th>
<th>3</th>
<th>?</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denominator</td>
<td>?</td>
<td>8</td>
<td>12</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Side Length (cm)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimeter (cm)</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>30</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

- Ask students to create a concrete and pictorial display of a table of values showing the balance in a bank account or the height of a plant as it grows. Have students graph the information.
- Describe a real-world situation to the students that depicts a pattern. For example, a taxi ride costs $2.50 to start and then $0.40 for each kilometre. How much does it cost to travel 1 km? 2 km? 3 km? Have students record the pattern, create a table of values, and graph the relationship. Have them determine the total cost of a 15 km trip.
- Have students identify the relationship, rule, and state the value for the 3rd and 12th terms for a given table.
SCO: **PR1:** Demonstrate an understanding of the relationships within tables of values to solve problems.
[C, CN, PS, R]

SCO: **PR2:** Represent and describe patterns and relationships using graphs and tables.
[C, CN, ME, PS, R, V]

Assessment Strategies

- Ask students to put the numbers 2, 4, 4, 5, 12, 20 and 40 in the correct spots in the tables of equivalent fractions shown below.

<table>
<thead>
<tr>
<th>Numerator</th>
<th>1</th>
<th>3</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denominator</td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numerator</th>
<th>2</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denominator</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Have students create the table of values from a graph, such as the one below, and describe the relationship in words.

- Have students refer to the following table to answer these questions:
 a. Create a rule showing how the number of hours of lessons can help determine the cost for one lesson if you pay at the start to rent skis. Explain your thinking.
 b. Use this rule to predict the total cost for 10 hours of lessons.
 c. Why do 10 hours not cost twice as much as 5 hours?
 d. Create a graph to show the values in the table.

<table>
<thead>
<tr>
<th>Cost of Ski Lessons and Rental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of hours (h)</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

- Provide a visual pattern such as the one below. Have students create and graph its table of values and describe the relationship.
SCO: **PR3**: Represent generalizations arising from number relationships using equations with letter variables.
[C, CN, PS, R, V]

<table>
<thead>
<tr>
<th>C</th>
<th>Communication</th>
<th>PS</th>
<th>Problem Solving</th>
<th>CN</th>
<th>Connections</th>
<th>ME</th>
<th>Mental Math and Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Technology</td>
<td>V</td>
<td>Visualization</td>
<td>R</td>
<td>Reasoning</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR2</td>
<td>PR3</td>
<td>PR4</td>
</tr>
<tr>
<td>Solve problems involving single-variable, one-step equations with whole number coefficients and whole number solutions.</td>
<td>Represent generalizations arising from number relationships using equations with letter variables.</td>
<td>Explain the difference between an expression and an equation. Evaluate an expression given the value of the variable(s).</td>
</tr>
</tbody>
</table>

Elaboration

Mathematical patterns and number relationships occur in all areas of mathematics and can be generalized using **algebraic equations**. Previously, students have learned to build and model repeating and growing patterns, and then develop tables and charts to record them. Tables and charts are graphic organizers that allow students to see mathematical relationships. The next step is to be able to express these patterns and relationships using an equation, including letters to represent the variable elements. It is also important that students are able to generalize and create pattern rules to represent mathematical situations.

One opportunity for students to make generalizations arising from number relationships is when they explore perimeters and areas in the outcome SS3. One of the goals of this outcome is to make a connection between the concepts to create generalized formulas using variables.

```
Perimeter = c + c + c = 3c
Perimeter = k + t + n
Perimeter = d + d + d + d = 4d
Area = m × s
Perimeter = m + s + m + s = 2m = 2s
Perimeter = m + s + m + s = 2m = 2s
Area = m × s
= ms
```

Another example of a number relationship generalization is the **commutative property**. Earlier experiences with number combinations have led students to see that addition and multiplication are commutative: changing the order of the **addends** or **factors** does not change the answer. Using **variables** to represent the idea that order does not matter is a good way to describe the property (e.g., \(a + b = b + a \) or \(a \times b = b \times a \)).

Word expressions and word problems should be used in this outcome to reinforce mathematical expressions (for example, "4 apples" could be expressed as "4a", or "3 bananas and 2 pears is 5 fruit" could be "3b + 2p = 5", etc.).

Students should also have opportunities to develop mathematical relationships and expressions from the patterns found in tables such as those investigated in PR1 and PR2.

This specific curriculum outcome is addressed in **Math Makes Sense 6** in the following units:
- Unit 1, Lesson 4, pp. 19-23
- Unit 1, Lesson 7, pp. 33-35
- Unit 1, Unit Problem, pp. 42, 43
- Unit 6, Lesson 7, pp. 226-230
- Unit 6, Lesson 8, pp. 231-234
SCO: **PR3**: Represent generalizations arising from number relationships using equations with letter variables.

[C, CN, PS, R, V]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:
- Write and explain the formula for finding the perimeter of any regular polygon.
- Write and explain the formula for finding the area of any given rectangle.
- Develop and justify equations using letter variables that illustrate the commutative property of addition and multiplication, e.g., $a + b = b + a$ or $a \times b = b \times a$.
- Describe the relationship in a given table using a mathematical expression.
- Represent a pattern rule using a simple mathematical expression, such as $4d$ or $2n + 1$.
SCO: PR3: Represent generalizations arising from number relationships using equations with letter variables.
[C, CN, PS, R, V]

Instructional Strategies
Consider the following strategies when planning lessons:

- Have students examine the perimeter of regular polygons with various side lengths. They could record the data for a regular hexagon as shown in the table below.

<table>
<thead>
<tr>
<th>Side length (cm)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimeter (cm)</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>36</td>
</tr>
</tbody>
</table>

The next step is to have students generalize the pattern they have found for the perimeter of regular hexagons, stating the pattern rule as an algebraic equation: \(P(\text{hexagon}) = 6n \)

Other types of generalizations can be developed through measurement and pattern tables as students explore the perimeters of other regular polygons and areas of rectangles in SS3.

- Reinforce the concept that multiplication is commutative by having students build an array model of a multiplication fact using linking cubes or tiles. Have them turn the model to show the factors in a different order, illustrating the concept that the same product results. The final step is to have students replace the factors with variables.

\[
6 \times 2 = 2 \times 6
\]

\[
a \times b = b \times a
\]

- Provide students with pictures or models of the first three steps of some growing patterns. Have students extend the pattern for several more steps, record the pattern in a table, and look for the relationship. Have them write the relationship as a formula and use the formula to predict entries at any step.

Suggested Activities

- Play “Guess My Rule”. Describe a number pattern and have students create the mathematical expression that matches. For example: “I double every time” or “Divide me in half and add three every time.”
- Provide a table of values and have students generalize the pattern rule and record it as an algebraic equation.
SCO: PR3: Represent generalizations arising from number relationships using equations with letter variables.
[C, CN, PS, R, V]

Assessment Strategies

- Have students create an equation for the following patterns:
 - A number doubles;
 - A number triples and 2 is added every time.
- Provide students with a number of equations such as $27 + 15 = n + 27$. Observe whether the students misinterpret the meaning of the variable, of the meaning the equal sign, or the commutative property by answering 42. Include multiplication equations as well. (See also PR4).
- Have students explain how the following two expressions are the same and different. Explain using models, pictures, and words.
 - $m \times n$
 - $n \times m$
- Provide the following table and ask students to generalize the relationship with an equation.

<table>
<thead>
<tr>
<th>Side length (cm)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimeter (cm)</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td>20</td>
</tr>
</tbody>
</table>

- Have students write and explain the formula for finding the perimeter of any square (or other regular polygons) using variables.
- Have students write and explain the formula for finding the area of any given rectangle using variables.
SCO: **PR4:** Demonstrate and explain the meaning of preservation of equality concretely, pictorially and symbolically.

[C, CN, PS, R, V]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[T] Technology</td>
<td>[V] Visualization</td>
<td>[R] Reasoning</td>
<td></td>
</tr>
</tbody>
</table>

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR2 Solve problems involving</td>
<td>PR4 Demonstrate and explain the meaning of</td>
<td>PR4 Explain the difference between an expression</td>
</tr>
<tr>
<td>single-variable, one-step equations</td>
<td>preservation of equality concretely, pictorially and</td>
<td>and an equation.</td>
</tr>
<tr>
<td>with whole number coefficients and</td>
<td>symbolically.</td>
<td>PR5 Evaluate an expression given the value of the</td>
</tr>
<tr>
<td>whole number solutions.</td>
<td></td>
<td>variable(s).</td>
</tr>
</tbody>
</table>

Elaboration

Students have had experience exploring the concept of equality since grade 2 and solving equations in a basic form since grade three. A misconception for some students may be that the equal sign indicates an answer. They will need further practice and reinforcement in grade 6 to view the equal sign as a symbol of **equivalence** and balance, and represents a **relationship**, not an operation.

Through the use of balance scales and concrete representations of equations, students will see the equal sign as the midpoint or balance, with the quantity on the left of the equal sign is the same as the quantity on the right. When the quantities balance, there is **equality**. When there is an imbalance, there is **inequality**. The work in grade six extends this concept so that students discover that any change to one side must be matched with an equivalent change to the other side in order to maintain the balance. For example, if four is added to the left side of the equation, four must be added to the right side in order to preserve the equality.

In grades 3 and 4, **variables** are represented using a variety symbols such as circles and triangles. In grade 5, students were introduced to using letters as variables. However, students may have the misconception that $7w + 22 = 109$ and $7n + 22 = 109$ will have different solutions because the letter representing the variable has changed. Also they may see letters as objects rather than numerical values. Conventions of notations using variables may also produce misunderstandings. For example, $r \times z$ is written as rz, but 3×5 cannot be written as “35” and $2g$, where $g = 4$ means 2 times 4, not 24.

When using variables, or representing variables using concrete objects, such as paper bags or boxes, students need to be directly taught that if the same variable, or object, is used repeatedly in the same equation, then there is only one possible solution for that variable or unknown.

For the example below, $c + c = 6$ or $2c = 6$ (c must represent the same number).

```
  + ----------
  |   c       |
  |          +->
  |   c       |
  +----------+---
       c must be worth 3
```

Students should explore equivalent forms of a given equation by applying the preservation of equality and verify using concrete materials on a balance. They should draw and record the original equation, then draw and record the results after adding the same amount to both sides, subtracting the same amount from both sides, multiplying both sides by the same factor, or dividing both sides by the same divisor.

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:

- Unit 1, Lesson 8, pp. 36-39
SCO: PR4: Demonstrate and explain the meaning of preservation of equality concretely, pictorially and symbolically.
[C, CN, PS, R, V]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:

- Model the preservation of equality for addition using concrete materials, such as a balance or using pictorial representations and orally explain the process.
- Model the preservation of equality for subtraction using concrete materials, such as a balance or using pictorial representations and orally explain the process.
- Model the preservation of equality for multiplication using concrete materials, such as a balance or using pictorial representations and orally explain the process.
- Model the preservation of equality for division using concrete materials, such as a balance or using pictorial representations and orally explain the process.
- Write equivalent forms of a given equation by applying the preservation of equality and verify using concrete materials, e.g., $3b = 12$ is the same as $3b + 5 = 12 + 5$ or $2r = 7$ is the same as $3(2r) = 3(7)$.
SCO: PR4: Demonstrate and explain the meaning of preservation of equality concretely, pictorially and symbolically.
[C, CN, PS, R, V]

Instructional Strategies
Consider the following strategies when planning lessons:

- Build known quantities on balance scales to model equality and also model how changes to one side must be matched with equivalent changes on the other. For example, model 3 cubes plus 5 cubes on one side and 8 cubes on the other. Have students record the equation. Then model adding 4 to both sides, subtracting 2 from both sides, doubling both sides, halving both sides, etc. Have the students record the equations.
- Model concrete examples of equations that include a variable, such as $3 + x = 10$. Model and record the preservation of equality when 5 is added to each side (e.g., $3 + x + 5 = 10 + 5$). Also explore the preservation of equality using subtraction, multiplication and division on both sides of the equation.
- Provide students with a number of equations such as $32 + 16 = k + 32$ and discuss how this can be solved without computation. Draw students’ attention to the relationship of the left side to the right of the equation and that addition is not required to solve for the variable. Note this connects with the commutative property concept as described in PR3.
- Use websites such as Learn Alberta to provide opportunities to further explore this concept: www.learnalberta.ca/content/mesg/html/math6web/lessonLauncher.html?lesson=m6lessonshell11.swf

Suggested Activities

- Extend the activity of “Tilt or Balance” game (Van de Walle & Lovin, vol. 3, 2006, p. 279) to include adding and subtracting variables.
- Provide a variety of illustrations of pan balances with expressions on each side. Ask students to determine if they balance.

\[
\begin{align*}
5 \times 4 &\quad 40 \div 2 \\
\frac{\Delta}{\Delta}
\end{align*}
\]

\[
\begin{align*}
4 + 2 + 6 &\quad 6 \times 2 \\
\frac{\Delta}{\Delta}
\end{align*}
\]

- Provide illustrations of pan balances that show equal expressions. Ask students to draw and record the shown equation, then draw and record the results when adding the same amount to both sides, subtracting the same amount from both sides, multiplying both sides by the same factor, and dividing both sides by the same divisor.

\[
\begin{align*}
4y &\quad 24 \\
\frac{\Delta}{\Delta}
\end{align*}
\rightarrow
\begin{align*}
2(4y) &\quad 2 \times 24 \\
\frac{\Delta}{\Delta}
\end{align*}
\]
SCO: **PR4: Demonstrate and explain the meaning of preservation of equality concretely, pictorially and symbolically.**

[C, CN, PS, R, V]

Assessment Strategies

- Tell students that \(x\) represents a certain number. Ask: Why must the solutions to \(2x + 8 = 18\) and \(2x + 4 = 14\) be the same?
- Ask students, “Which would have the larger value, “\(n\)” or “\(y\)”? Explain using numbers, pictures, and/or words.

 \[
 2n + 6 = 14 \quad 16 = 2y + 6
 \]
- Ask students to model the following equations using balance scales and various materials.

 Examples: \(12 + 2s = 18\)

 \[
 17 = 5b - 3
 \]

 \[
 3p = 18 ÷ 2
 \]
- Have students write an equation that represents each model:

 a. ![Equation Model](image)

 b. ![Equation Model](image)

 Ask:

 - Are the equations for these two scales equivalent? How do you know?
 - Draw and record what will happen if you add 2 cubes to each side. Repeat for subtracting 2 from each side.
 - Draw and record what will happen if you divide both sides of (a.) by 2.
 - Draw and record what happens if you multiply both sides of (b.) by 3.
- Have students write two equations that are equivalent to \(4m = 12\). Explain how they are equivalent.
SHAPE AND SPACE
SCO: SS1: Demonstrate an understanding of angles by:
- identifying examples of angles in the environment
- classifying angles according to their measure
- estimating the measure of angles using 45°, 90° and 180° as reference angles
- determining angle measures in degrees
- drawing and labelling angles when the measure is specified.
[C, CN, ME, V]

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS3</td>
<td>SS1</td>
<td>SS1</td>
</tr>
</tbody>
</table>
| Demonstrate an understanding of area of regular and irregular 2-D shapes by: recognizing that area is measured in square units; selecting and justifying referents for the units cm² or m²; estimating area by using referents for cm² or m²; determining and recording area constructing different rectangles for a given area (cm² or m²) in order to demonstrate that many different rectangles may have the same area. | Demonstrate an understanding of angles by:
- identifying examples of angles in the environment
- classifying angles according to their measure
- estimating the measure of angles using 45°, 90° and 180° as reference angles
- determining angle measures in degrees
- drawing and labelling angles when the measure is specified. | Demonstrate an understanding of circles by: describing the relationships among radius, diameter and circumference of circles; relating circumference to pi; determining the sum of the central angles; constructing circles with a given radius or diameter; solving problems involving the radii, diameters and circumferences of circles. |

Elaboration

Students have been previously introduced to the idea of angles during their study of polygons but in Grade 6 the properties angles are explored in greater depth. Frequently, angles are defined as the meeting of two rays at a common vertex. It is more useful, however, for students to conceptualize an angle as a turn and the measure of the angle as the amount of turn. It is important for students to understand that:
- a larger angle corresponds to a greater turn from the starting position
- the length of the arms (rays) of the angle does not affect the turn amount and, therefore, does not affect angle size
- the orientation of an angle does not affect its measurement or classification.

It is also important that students learn the different types of angles and be able to classify them as acute (less than 90°), right (exactly 90°), obtuse (greater than 90° and less than 180°), straight (exactly 180°), reflex (more than 180°).

Students should learn how to use a protractor to measure angles accurately. When drawing or measuring angles, students need to be reminded that the centre point of the protractor needs to be lined up with the vertex of the angle, and the 0° line of the protractor must line up exactly with one ray of the angle. Students typically use protractors with double scales and will need to learn how to determine which set of numbers to use in a given situation. This is best accomplished by first having the student estimate the size of the angle with known benchmark angles such as 45°, 90° and 180° and then decide which reading makes the most sense. For example, the angle shown below is obviously an acute angle, and therefore its measure is 50°, not 130°.
SCO: **SS1: Demonstrate an understanding of angles by:**

- identifying examples of angles in the environment
- classifying angles according to their measure
- estimating the measure of angles using 45°, 90° and 180° as reference angles
- determining angle measures in degrees
- drawing and labelling angles when the measure is specified.

\[C, \text{CN, ME, V}\]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:

- Provide examples of angles found in the environment.
- Classify a given set of angles according to their measure, e.g., acute, right, obtuse, straight, reflex.
- Sketch 45°, 90° and 180° angles without the use of a protractor, and describe the relationship among them.
- Estimate the measure of an angle using 45°, 90° and 180° as reference angles.
- Measure, using a protractor, given angles in various orientations.
- Draw and label a specified angle in various orientations using a protractor.
- Describe the measure of an angle as the measure of rotation of one of its sides.
- Describe the measure of angles as the measure of an interior angle of a polygon.

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:

- Unit 4, Lesson 1, pp. 126-129
- Unit 4, Lesson 2, pp. 130-132
- Unit 4, Lesson 3, pp. 133-138
- Unit 4, Lesson 4, pp. 139-142
- Unit 4, Game, p. 143
- Unit 4, Lesson 5, pp. 144, 145
- Unit 4, Unit Problem, pp. 156, 157
SCO: SS1: Demonstrate an understanding of angles by:
- identifying examples of angles in the environment
- classifying angles according to their measure
- estimating the measure of angles using 45°, 90° and 180° as reference angles
- determining angle measures in degrees
- drawing and labelling angles when the measure is specified.
[C, CN, ME, V]

Instructional Strategies
Consider the following strategies when planning lessons:

- Present angles in a variety of real life contexts (e.g., angles formed by the two hands of a clock, by the intersection of two roads, and by the blades of scissors or hedge clippers).
- Explore the similarities between rulers and protractors. Students should recognize that protractors work similarly to rulers and the distance between the two rays is what should be counted (measured).
- Show students angles (with arms of different lengths) in various positions and of different sizes. Ask them to estimate each (e.g., almost 45°, 90°, 180°, etc.).
- Have students find angles in various 2-D polygons and on faces of 3-D shapes. Students could use any right-angled (90°) corner of a piece of paper to check their estimates. Folding this corner in half could also help visualize half a right angle (45°).
- Have students stand with their arms closed on top of each other pointing out in the same direction to the side. This shows (0°). Then have them raise one arm up until it points directly up (90°), then continue rotating their arm until their arms are out straight to make straight angles (180°).
- Have students create their own non-standard unit protractors. Provide the students with semicircular shapes cut from tracing paper, or waxed paper. Have them fold the semicircle in half, forming a right angle or square corner. Explain that angles are measured in degrees and that a right angle is 90 degrees. Ask them to fold once again and determine and name the new angles created by the folds. Discuss the measurement of these folds and how they can assist with estimation of angle sizes.

Suggested Activities
- Have students investigate angles in various shapes, using the corner of a piece of paper as a reference for right angle. Does it fit the angle of the shape or is the angle greater/less than the corner of the paper?
- Have students make various angles with pipe cleaners or geo-strips (e.g., almost a right angle, about 45°, a right angle, a straight angle, a reflex angle).
- Ask students to explore the angles in the six different pattern blocks. Which blocks have only acute angles? Only obtuse angles? Both acute and obtuse angles? Only right angles? Reflex angles?
- Display different times one at a time on overhead clocks. Ask students to name and describe the angle made by the hands.
- Ask students to measure the angles found in various letters of the alphabet.
- Ask students where acute, right, obtuse, straight, and reflex angles could be identified in the classroom.
SCO: **SS1: Demonstrate an understanding of angles by:**
- identifying examples of angles in the environment
- classifying angles according to their measure
- estimating the measure of angles using 45°, 90° and 180° as reference angles
- determining angle measures in degrees
- drawing and labelling angles when the measure is specified.

[C, CN, ME, V]

Assessment Strategies

- Ask students to combine two or more pattern blocks to make examples of acute, right, straight, and obtuse angles. Have them record by tracing each one on paper.
- Tell students that the hands of a clock are forming a given angle (such as 45°). Ask what time it could be.
- Show the student the diagram below and ask why it is easy to tell that it is 45°.

![Diagram](image)

- Show students an angle of, for example 135°, and tell them that someone said that it was 45°. Ask students to explain how he/she thinks such an error could be made.
- Provide students with various angles to measure.
- Have students draw angles with specified measures.
- Ask students how can you use a 90° angle to construct a 45° angle?
- Tell students that Trevor measured the angle below and said it measured 50°. What was his error?
SCO: SS2: Demonstrate that the sum of interior angles is:
- 180° in a triangle
- 360° in a quadrilateral.
[C, R]

[T] Technology [V] Visualization [R] Reasoning

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
</table>
| SS6 Identify and sort quadrilaterals, including: rectangles; squares; trapezoids; parallelograms; rhombuses according to their attributes. | SS2 Demonstrate that the sum of interior angles is:
- 180° in a triangle
- 360° in a quadrilateral. | SS1 Demonstrate an understanding of circles by: describing the relationships among radius, diameter and circumference of circles; relating circumference to pi; determining the sum of the central angles; constructing circles with a given radius or diameter; solving problems involving the radii, diameters and circumferences of circles. |

Elaboration

In previous grades, students have experienced the attributes of polygons, but this has been limited to side lengths and other properties of the sides. They will have informally explored angles and will build on these experiences as angles are investigated in greater depth in grade 6. It is recommended that SS1 and SS4 be taught before this outcome, so that students are familiar with the measurement of angles, the different types of triangles, and the vocabulary to name and describe them.

Through explorations, students should discover that the angles of a triangle add to 180°. This can be done using paper models and/or dynamic geometry software such as Geometer’s Sketchpad, Smart Board Notebook, or interactive websites such as GeoGebra (http://www.geogebra.org/cms/). Different types of triangles (acute-angled, isosceles, obtuse-angled, equilateral, etc.) need to be used so that students discover that this property applies to all types of triangles.

Exploration of the angle properties of triangles should be extended to quadrilaterals by concretely investigating the relationship between triangles and quadrilaterals. Students should discover that two triangles can be combined to create a quadrilateral and conclude that the sum of the angles is 360° (180° + 180°).

This specific curriculum outcome is addressed in Math Makes Sense 6 in the following units:
- Unit 4, Lesson 6, pp. 146-149
- Unit 4, Lesson 7, pp. 150-153
- Unit 4, Unit Problem, pp. 156, 157
SCO: SS2: Demonstrate that the sum of interior angles is:
 • 180° in a triangle
 • 360° in a quadrilateral.
 [C, R]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:
 • Explain, using models, that the sum of the interior angles of a triangle is the same for all triangles.
 • Explain, using models, that the sum of the interior angles of a quadrilateral is the same for all quadrilaterals.
SCO: **SS2**: Demonstrate that the sum of interior angles is:
- 180° in a triangle
- 360° in a quadrilateral.

 [C, R]

Instructional Strategies
Consider the following strategies when planning lessons:

- Have students draw a triangle of any type and label its angles 1, 2, 3. Cut it out. Then have the student tear off the three angles and place the three vertices together to form a 180° angle. Have students measure and record the three angles and add them.
- Use graphic software and create three congruent triangles. Rotate as described above.
- Have students cut out three congruent triangles by stacking three sheets of paper and cutting the three shapes at once. Rotate the triangles so the three different vertices meet at one point to form a 180° angle.
- Cut out a quadrilateral and label the four vertices. Have students tear off the four corners and join the vertices together. Highlight the 360° sum.
- Have students draw and cut out a quadrilateral once the sum of the angles of a triangle has been explored and determined. Have them determine that a quadrilateral can be made up of two triangles, and the sum of the angles of those two triangles equals 360°.
- Explore how the characteristics of a square are helpful for students to remember the fact that every quadrilateral has a sum of angles equal to 360°.

Suggested Activities
- Have students each draw a variety of different triangles. Have them measure, record, and add the angles of each one. Have them discuss their findings until they reach the conclusion that the sum of the angles of any triangle is 180°. Repeat the above activity using a variety of quadrilaterals.
- Provide a variety of triangles with the measures of two angles shown. Students must find the measure of the third angle using their understanding of the sum of the angles of a triangle (without a protractor).
- Ask students to predict the interior angle of an equilateral triangle, and then check by measuring with a protractor.
- Provide students with a variety of quadrilaterals with the measures of three of the angles given. Students must find the measure of the fourth angle without a protractor.
- Ask students to predict the interior angle of an equilateral triangle, and then check by measuring with a protractor.
SCO: **SS2: Demonstrate that the sum of interior angles is:**
- **180° in a triangle**
- **360° in a quadrilateral.**
[C, R]

Assessment Strategies

- Ask students can a triangle have more than one obtuse angle? Why or why not? Explain using numbers, pictures, and/or words.
- Ask students can a triangle have two right angles? Why or why not? Explain using numbers, pictures, and/or words.
- Tell students that any quadrilateral can be divided into two triangles. Since the sum of the angles on one triangle is 180°, it is obvious that the sum of the angles of a quadrilateral must be 360°. Explain what you think about the statement using numbers, pictures, and/or words.
- Have students solve to find the measure of the third angle of a triangle when the measures of the other two angles are given.
- Have students solve to find the measure of the fourth angle of a quadrilateral when the measures of the other three angles are given.
SCO: SS3: Develop and apply a formula for determining the:
- perimeter of polygons
- area of rectangles
- volume of right rectangular prisms.

[C, CN, PS, R, V]

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
</table>
| SS3 Demonstrate an understanding of volume by: selecting and justifying referents for cm³ or m³ units; estimating volume by using referents for cm³ or m³; measuring and recording volume (cm³ or m³) constructing rectangular prisms for a given volume. | SS3 Develop and apply a formula for determining the:
- perimeter of polygons
- area of rectangles
- volume of right rectangular prisms. | SS2 Develop and apply a formula for determining the area of parallelograms; triangles; circles. |

Elaboration

The basic concepts of perimeter, area, and volume have been introduced and explored in previous grades. Students have estimated and worked with both non-standard and standard units. The emphasis for grade 6 is to have students discover the most efficient strategies for finding these measures. These explorations should eventually elicit from students the traditional formulas for perimeter of polygons, area of rectangles, and volume of right rectangular prisms. This outcome is closely connected to PR3 where students use letter variables to express a formula.

As a result of prior experiences, students should conceptualize perimeter as the total distance around an closed object or figure. They might observe that, for certain polygons, the perimeter is particularly easy to compute.
- Equilateral triangle: the perimeter is 3 times the side length.
- Square: the perimeter is 4 times the side length.
- Rectangle: the perimeter is double the sum of the length and the width.

Students will be familiar with the concept of area from grade 4, where they found the area of rectangles using standard units. “From earlier work with multiplication and the array meaning or model of multiplication, students will know that, to determine the total number of squares, you multiply the number of rows of squares by the number of squares in each row” (Small, 2008, p. 398). Students need to have many opportunities to experiment with the relationships among length, width, and area to develop their own formulas for area of rectangles (remind students that a square is a special type of rectangle).

Volume has been studied in grade 5. Students should recognize volume as:
- the amount of space taken up by a 3-D object; or
- the amount of cubic units required to build and fill the object.

Students should also recognize that each of the three dimensions of the prism affects the volume of the object. Development of the concept of using the area of the base as part of the formula for volume of a right rectangular prism will be helpful for work in later grades as volume of other 3-D objects is explored.
SCO: SS3: Develop and apply a formula for determining the:
 - perimeter of polygons
 - area of rectangles
 - volume of right rectangular prisms.
 [C, CN, PS, R, V]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:

- Explain, using models, how the perimeter of any polygon can be determined.
- Generalize a rule (formula) for determining the perimeter of polygons, including rectangles and squares.
- Explain, using models, how the area of any rectangle can be determined.
- Generalize a rule (formula) for determining the area of rectangles.
- Explain, using models, how the volume of any right rectangular prism can be determined.
- Generalize a rule (formula) for determining the volume of right rectangular prisms.
- Solve a given problem involving the perimeter of polygons, the area of rectangles and/or the volume of right rectangular prisms.

This specific curriculum outcome is addressed in Math Makes Sense 6 in the following units:

- Unit 6, Lesson 7, pp. 226-230
- Unit 6, Lesson 8, pp. 231-234
- Unit 6, Lesson 9, pp. 235-238
- Unit 6, Game, p. 239
- Unit 6, Unit Problem, pp. 242, 243
SCO: SS3: Develop and apply a formula for determining the:
 • perimeter of polygons
 • area of rectangles
 • volume of right rectangular prisms.
 [C, CN, PS, R, V]

Instructional Strategies
Consider the following strategies when planning lessons:

- Provide pictures of many regular polygons, with the measure of one side provided for each. Have students explore to find the most efficient method for finding the perimeters of each. Lead students to discover that "side + side + side + side..." is inefficient when multiplication can be used instead. Repeat the activity with rectangles and parallelograms.
- Provide students with graphics of many rectangles, including squares, in which the square units are shown and the length and width measures are given. Ask students to find the most efficient way to find the areas of each. Begin with small areas, such as 2 cm × 3 cm, and help students relate these rectangles to the array model of multiplication.
- Have students create many different rectangles, including squares, on grid paper. Have them find and record the length, width, and area for each (by counting the squares, if necessary). They should record their findings in chart form, so they can look for relationships in the table among the length, width, and area for each. Lead students to develop the formula: length × width (Small, 2008, p. 398).
- Have students build a variety of right rectangular prisms. On a chart, have them record the length and width of the base and the height, as well as the volume. Have students look for relationships among these measures and lead students to developing the formula

Suggested Activities

- Provide students with a variety of rectangles with incomplete grids. Have them apply the formula to determine their areas.

- Provide 3D regular polygon objects to explore to find patterns between side lengths and create a rule (formula) for each to calculate the perimeter.
- Present students with rectangular prisms constructed out of linking cubes. Have them calculate the volume. Determine if the student uses multiplication rather than counting cubes.
- Provide students with linking cubes and have them build cubes of different sizes. In each case, ask them to record the various side lengths and volumes in a table. Then ask them to predict the volume of a cube with a side length of 2.5 units.
SCO: SS3: Develop and apply a formula for determining the:
- perimeter of polygons
- area of rectangles
- volume of right rectangular prisms.
[C, CN, PS, R, V]

Assessment Strategies

- Tell students that the perimeter of a triangle is 15 cm. Have them describe and draw the possible side lengths. (Note: if outcome SS4 has been done, the type of triangle can be specified – scalene, isosceles, etc.)
- Ask students: “How can a formula be used to determine the perimeter of the following regular polygons?”

- Provide students with problems to solve such as the following.
 - “A teen mowed two lawns. One lawn was 10 m by 12 m, and the other was 15 m by 10 m. The teen charges $3.00 for each 10 m². How much was charged for the two lawns?”
- Provide students with the dimensions of a real world container that is a rectangular prism (e.g., a carton, a box, a popcorn bag, etc.). Ask students to find the perimeter and area of each face. Students should also determine the volume for the prism. Ask students to determine the possible dimensions if the object needed to hold twice as much.
- Have students explain, using numbers, pictures, and/or words, why a rectangular prism that is 5 cm by 3 cm, with a height of 4 cm must have a volume of 60 cm³.
SCO: **SS4**: Construct and compare triangles, including:
- scalene
- isosceles
- equilateral
- right
- obtuse
- acute
 in different orientations.

[C, PS, R, V]

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
</table>
| SS5 Describe and provide examples of edges and faces of 3-D objects and sides of 2-D shapes that are: parallel; intersecting; perpendicular; vertical or horizontal. | SS4 Construct and compare triangles, including:
- scalene
- isosceles
- equilateral
- right
- obtuse
- acute
 in different orientations. | SS3 Perform geometric constructions, including:
- perpendicular line segments;
- parallel line segments;
- perpendicular bisectors; angle bisectors. |

Elaboration

Students need to realize triangles can be sorted either by the length of their sides (equilateral, isosceles, scalene) or by the size of their angles (right, acute, obtuse).

Students should explore through discussion why there are only three possible classifications by side length. It should be discovered that triangles cannot be classified according to one “equal side”, but there needs to be zero, two, or three equal sides. Similar discussion may be held around the reasons for the three different types of triangles in the set of classifications by angle size. For example, a triangle cannot have more than one obtuse angle (greater than 90°) as the angles in a triangle add up to 180°. Once these two sets of classification have been studied, teachers should extend students’ knowledge to explore how a triangle may fall into two categories at the same time (e.g., a right scalene triangle, an obtuse isosceles triangle, etc.).

Students have not used the term congruent before this point, although they have had experience comparing and matching 2-D shapes based on attributes. It would be helpful to introduce the symbol for congruent (\(\cong\)).

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:
- Unit 6, Lesson 1, pp. 200-204
- Unit 6, Lesson 2, pp. 205-208
- Unit 6, Lesson 3, pp. 209-213
- Unit 6, Unit Problem, pp. 242, 243
SCO: SS4: Construct and compare triangles, including:
 • scalene
 • isosceles
 • equilateral
 • right
 • obtuse
 • acute
 in different orientations.
[C, PS, R, V]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:
• Sort a given set of triangles according to the length of the sides.
• Sort a given set of triangles according to the measures of the interior angles.
• Identify the characteristics of a given set of triangles according to their sides and/or their interior angles.
• Sort a given set of triangles and explain the sorting rule.
• Draw a specified triangle, e.g., scalene.
• Replicate a given triangle in a different orientation and show that the two are congruent.
SCO: SS4: Construct and compare triangles, including:
 - scalene
 - isosceles
 - equilateral
 - right
 - obtuse
 - acute
 in different orientations.
 [C, PS, R, V]

Instructional Strategies
Consider the following strategies when planning lessons:

- Explore triangles by folding to compare and measuring the angles could lead to discovering these patterns: a) all angles in equilateral triangles are equal; b) two angles in isosceles triangles are equal; and c) all angles in scalene triangles are different.
- Have students test for congruency by placing one shape on top of each other to see if the outlines match exactly.
- Give students cards with examples of right, acute, and obtuse triangles on them. Ask them to sort them into three groups by the nature of their angles and share how they were sorted. Attach the names for these classifications to the students’ groups.
- Use Venn diagrams or Carroll diagrams as a useful graphic organizer for sorting triangles.

Suggested Activities

- Prepare pictures on cards or cutouts of several examples of these three kinds of triangles. Ask students to sort them into three groups. Ask them to explain their sort. Often, they will sort them by how their sides look, without knowing the actual names. If so, this will lead to a focus on measuring and comparing the sides, and noting common properties to which the names equilateral, isosceles, and scalene can be attached. (If not, the teacher may sort them, ask students to determine the sorting rule, and do other explorations.)
- Identify everyday examples of each type of triangle; yield sign, bridges, the side of a Toblerone bar, other support items, ladder against a wall. Students should also examine familiar materials in the classroom, such as pattern blocks and tangrams.
- Provide pairs of students with two 6 cm straws, two 8 cm straws, and two 10 cm straws. Have them investigate the triangles they can make using 3 straws at a time and complete a table with their results. This activity could be varied by using toothpicks or geo-strips.

<table>
<thead>
<tr>
<th>Straws Used</th>
<th>Type of Triangle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Provide students with paper cut-outs of various types of triangles. Have them explore how many different orientations of the same triangle they can find and trace.
- Have students draw a triangle on tracing paper and classify it. Have them fold the paper in order to trace the shape several different ways to create congruent triangles in other orientations.
SCO: SS4: Construct and compare triangles, including:
 • scalene
 • isosceles
 • equilateral
 • right
 • obtuse
 • acute
 in different orientations.
 [C, PS, R, V]

Assessment Strategies

- Have students draw a scalene right triangle, an isosceles, acute-angle triangle, and other examples of combined classifications.
- Have students construct specific triangles on their geoboards and record them on dot paper (e.g., an acute triangle that has one side using five pins; a right triangle that is also isosceles; an obtuse triangle that has one side using five pins).
- Have students draw a specified triangle type, such as:
 a. an obtuse triangle with an angle of 130°.
 b. a triangle with 3 cm and 4 cm sides that form a right angle.
 c. an equilateral triangle with 10 cm sides.
 d. an obtuse triangle with a 110° angle and one 5 cm side.
- Tell students that one side of a triangle is 20 cm. What might the lengths of the other two sides be for each of the followings kinds of triangles?
 - isosceles
 - scalene
 - equilateral
SCO: SS5: Describe and compare the sides and angles of regular and irregular polygons.
[C, PS, R, V]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[T] Technology</td>
<td>[V] Visualization</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS5 Describe and provide examples of edges and faces of 3-D objects and sides of 2-D shapes that are: parallel; intersecting; perpendicular; vertical or horizontal.</td>
<td>SS5 Describe and compare the sides and angles of regular and irregular polygons.</td>
<td>SS3 Perform geometric constructions, including: perpendicular line segments; parallel line segments; perpendicular bisectors; angle bisectors.</td>
</tr>
<tr>
<td>SS6 Identify and sort quadrilaterals, including: rectangles; squares; trapezoids; parallelograms; rhombuses according to their attributes.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elaboration

Initially, students identified shapes by their overall appearance emphasizing the properties of the sides. While other properties have been informally explored, the focus of grade 6 is to include all of the properties of sides and angles. Teachers need to provide students with questions and opportunities to guide their investigations of 2-D shapes through sorting activities.

Polygons are closed 2-D shapes with three or more straight sides. The sides intersect only at the vertices. A key property of polygons is that the number of sides is always equal to the number of vertices. Shapes that are missing one or more of these attributes are considered non-polygons. It is important that students focus on these attributes to determine whether the shape is a polygon. A common misconception is to think that triangles and quadrilaterals are not polygons since they have other names.

In grade 6, students will extend their knowledge to include both regular and irregular polygons. Regular polygons have all sides and angles equal (e.g., equilateral triangles, squares, yellow hexagon pattern blocks). Irregular polygons do not have all sides nor angles that are the same size. Students should be given opportunities to explore both regular and irregular polygons in their environment. Using the attributes of polygons, students should be able to sort into regular or irregular polygons.

It is also important for students to investigate the concept of congruence through direct comparison (laying one shape on top of the other) and by measuring the sides and angles.
SCO: SS5: **Describe and compare the sides and angles of regular and irregular polygons.**
[C, PS, R, V]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:
- Sort a given set of 2-D shapes into polygons and non-polygons, and explain the sorting rule.
- Demonstrate congruence (sides to sides and angles to angles) in a regular polygon by superimposing.
- Demonstrate congruence (sides to sides and angles to angles) in a regular polygon by measuring.
- Demonstrate that the sides of a regular polygon are of the same length and that the angles of a regular polygon are of the same measure.
- Sort a given set of polygons as regular or irregular and justify the sorting.
- Identify and describe regular and irregular polygons in the environment.

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:
- Unit 6, Lesson 4, pp. 214-218
- Unit 6, Lesson 5, pp. 219-223
- Unit 6, Lesson 6, pp. 224, 225
- Unit 6, Unit Problem, pp. 242, 243
SCO: SS5: Describe and compare the sides and angles of regular and irregular polygons.
[C, PS, R, V]

Instructional Strategies
Consider the following strategies when planning lessons:

- Provide students with a template for the Frayer Model and have them fill in the sections, individually or as a group, to consolidate their understanding of the properties of polygons and non-polygons. This activity may be repeated to distinguish the attributes of regular and irregular polygons.
- Have students prepare property lists with headings: sides, angles. Using a collection of regular and irregular polygons (models or pictures on cards), have students describe the shapes using language such as: all sides equal, 2 angles the same, opposite sides equal, no sides equal, etc. Then have the students sort the polygons into regular or irregular polygons.
- Provide students with a list of attributes and have them construct a polygon that has the set of attributes. Have students share and compare with the class.
- Display models or copies of regular polygons on the board. Place a smaller version of the regular polygon on the overhead projector. Have students move the projector until the image matches, with the one taped on the board. This will help to prove the congruence of their angles, regardless of their side lengths. Interactive white boards can also be an effective tool to show congruency of angles of regular polygons.

Suggested Activities

- Have students work in pairs to prepare a concentration card game with pictures of regular and irregular polygon and their corresponding names.

- Have students trace a regular polygon (e.g., yellow pattern block). Have them rotate their shape to prove the congruency of sides and angles. The congruency should be double-checked by measuring the polygon’s angles and sides.
- Have students go on a “Polygon and Irregular Polygon Scavenger Hunt”. Have them sort their polygons with similar attributes and explain their rules for sorting.
- Provide several copies of a non-regular polygon that has been rotated and reflected a number of different ways. Have students cut out one shape and superimpose it over the others to prove congruency. This can be done using paper drawings or on the computer. Incongruent shapes may be included. Extend this activity by having students repeat the activity with a shape of their own.
SCO: **SS5: Describe and compare the sides and angles of regular and irregular polygons.**
[C, PS, R, V]

Assessment Strategies

- Provide a set of many polygons. Have students match the congruent pairs.
- Have students create a T-chart with the headings of polygons and non-polygons. Then fill in chart with shapes that could include shapes from their environment (e.g., oval, pentagon, tiles, rectangular window, face of a clock, triangle seen on a roof, angle, sheet of paper, etc.). The task could be repeated with having students identify regular and irregular polygons.
- Provide students with several different polygons (regular and irregular) to sort and have them justify their sorting rule.
- Have students draw congruent polygons that satisfy a given set of attributes. Students should be able to prove the shapes are congruent by measuring.
- Provide two congruent irregular polygons. Have students prove congruency by measuring and labelling the sides and angles.
SCO: SS6: Perform a combination of translation(s), rotation(s) and/or reflection(s) on a single 2-D shape, with and without technology, and draw and describe the image.
[C, CN, PS, T, V]

SCO: SS7: Perform a combination of successive transformations of 2-D shapes to create a design, and identify and describe the transformations.
[C, CN, T, V]

<table>
<thead>
<tr>
<th>Communication</th>
<th>Problem Solving</th>
<th>Connections</th>
<th>Mental Math and Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C]</td>
<td>[PS]</td>
<td>[CN]</td>
<td>[ME]</td>
</tr>
<tr>
<td>[T] Technology</td>
<td>[V] Visualization</td>
<td>[R] Reasoning</td>
<td></td>
</tr>
</tbody>
</table>

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS7</td>
<td>Perform a single transformation (translation, rotation, or reflection) of a 2-D shape (with and without technology) and draw and describe the image.</td>
<td>SS5 Perform and describe transformations (translations, rotations or reflections) of a 2-D shape in all four quadrants of a Cartesian plane (limited to integral number vertices).</td>
</tr>
<tr>
<td>SS8</td>
<td>Identify a single transformation, including a translation, rotation, and reflection of 2-D shapes.</td>
<td>SS7 Perform a combination of successive transformations of 2-D shapes to create a design, and identify and describe the transformations.</td>
</tr>
</tbody>
</table>

Elaboration

In grade 5, students learned that there are three transformations that change the location of an object in space, and/or its orientation, but not its size or shape. The three types of transformations are: translations, reflections and rotations. These transformations result in images that are congruent with the original object.

- **translations** move a shape left, right, up, down or diagonally without changing its orientation. A real life example of a translation may be a piece moving on a chessboard.
- **reflections** can be thought of as the result of picking up a shape and turning it over. The reflected image is the mirror image of the original. A real life example of a reflection may be a pair of shoes.
- **rotations** move a shape around a turn centre. A real life example of a rotation may be clock hands.

In grade 6, students are expected to perform a combination of successive transformations with 2-D shapes. This could involve a single type of transformation repeated or more than one type of transformation (e.g., reflections and translations). Students will need to be able to describe and model the transformations. It is important for students to recognize that some transformations can be described in more than one way.

Students also must be able to create their own designs using a combination of successive transformations. It is also expected that students are able to analyze existing designs and describe the transformations used to create that design.
SCO: **SS6:** Perform a combination of translation(s), rotation(s) and/or reflection(s) on a single 2-D shape, with and without technology, and draw and describe the image.
[C, CN, PS, T, V]

SCO: **SS7:** Perform a combination of successive transformations of 2-D shapes to create a design, and identify and describe the transformations.
[C, CN, T, V]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:

SS6
- Demonstrate that a 2-D shape and its transformation image are congruent.
- Model a given set of successive translations, successive rotations or successive reflections of a 2-D shape.
- Model a given combination of two different types of transformations of a 2-D shape.
- Draw and describe a 2-D shape and its image, given a combination of transformations.
- Describe the transformations performed on a 2-D shape to produce a given image.
- Model a given set of successive transformations (translation, rotation and/or reflection) of a 2-D shape.
- Perform and record one or more transformations of a 2-D shape that will result in a given image.

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:
- Unit 8, Lesson 3, pp. 303-307
- Unit 8, Lesson 4, pp. 308-312
- Unit 8, Lesson 6, pp. 318, 319
- Unit 8, Game, p. 321
- Unit 8, Unit Problem, pp. 324, 325

SS7
- Analyze a given design created by transforming one or more 2-D shapes, and identify the original shape and the transformations used to create the design.
- Create a design using one or more 2-D shapes and describe the transformations used.

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:
- Unit 8, Lesson 5, pp. 313-317
- Unit 8, Technology Lesson, p. 320
- Unit 8, Unit Problem, pp. 324, 325
SCO: SS6: Perform a combination of translation(s), rotation(s) and/or reflection(s) on a single 2-D shape, with and without technology, and draw and describe the image. [C, CN, PS, T, V]

SCO: SS7: Perform a combination of successive transformations of 2-D shapes to create a design, and identify and describe the transformations. [C, CN, T, V]

Instructional Strategies

Consider the following strategies when planning lessons:

- Have students use shapes from the pattern blocks, tangrams, logic blocks, and other sources, to predict and confirm the results of the various transformations.
- Give students pictures of shapes and their images under various transformations. Have them predict what the relationships are and then confirm, using tracing paper or a mira.
- Have students discuss their predictions prior to performing given transformations to a shape.
- Have students investigate such questions as:
 - If a shape undergoes 2 translations, does it matter in which order they take place?
 - Does a reflection followed by a translation produce the same result as the translation followed by the reflection?
- Use wallpaper or fabric as sources of designs which utilize transformational geometry. Students can look at the designs to find evidence of translations, reflections, and rotations, and record the transformations they observe. Many wallpaper and fabric designs incorporate multiple transformations, and some include interesting tessellations.
- Explore examples of transformations in artists' work such as M.C. Escher (http://www.mcescher.com/).

Suggested Activities

- Provide pattern blocks and have students practice transformations and draw them on grid paper.
- Have students choose a pattern block, perform several transformations of their choice, draw the transformations on grid paper and have a partner describe the transformations that were performed.
- Have students respond in their journal to the following prompts:
 - Explain using words and pictures if a translation can ever look like a reflection.
 - Explain using words and pictures how you know if a figure and its image show a reflection, translation, or rotation.
- Place three geoboards side by side. Have one student make a scalene triangle on the first geoboard. Ask another student to construct on the second geoboard the image of this triangle if the right side of the first geoboard is used as a mirror line. Ask another student to construct on the third geoboard the image of the triangle on the second geoboard under a 90 degree counterclockwise rotation. Repeat this activity using other shapes.
- Use technology to demonstrate transformations. This could include websites (e.g., “The National Library of Virtual Manipulatives”), Geometer's Sketchpad software, and Smart Notebook software.
- Have students choose a 2-D shape and create their own design using a combination of successive transformations. Have students record their transformations, so that it could be reproduced the design.
- Have students use a pentomino to perform a combination of transformations, then sketch the pattern on grid paper.
SCO: **SS6:** Perform a combination of translation(s), rotation(s) and/or reflection(s) on a single 2-D shape, with and without technology, and draw and describe the image.
[C, CN, PS, T, V]

SCO: **SS7:** Perform a combination of successive transformations of 2-D shapes to create a design, and identify and describe the transformations.
[C, CN, T, V]

Assessment Strategies

- Have students prove that a 2-D shape and its transformation image are congruent.
- Have students locate the image of \(\triangle ABC \) after a reflection in line 1 followed by a reflection in line 2. Ask them what single transformation of \(\triangle ABC \) would have the same result.

![Image of transformations](image)

- Have students determine which transformations were performed on a given shape.
- Provide students with a 2-D shape and have them follow directions of successive transformations or a combination of transformations.
- Have students explain the transformations shown in a pattern, such as fabric, wallpaper or other designs.
- Present students with three pictures on grid paper of two congruent shapes after two transformations were performed on them. Ask students to predict what two transformations were performed. Could this have been done in more than one way? Could this have been done by a single transformation?

![Image of transformations](image)
SCO: SS8: Identify and plot points in the first quadrant of a Cartesian plane using whole number ordered pairs.

[C, CN, V]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[T] Technology</td>
<td>[V] Visualization</td>
<td>[R] Reasoning</td>
<td></td>
</tr>
</tbody>
</table>

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS8 Identify and plot points in the first quadrant of a Cartesian plane using whole number ordered pairs.</td>
<td>SS4 Identify and plot points in the four quadrants of a Cartesian plane using integral ordered pairs.</td>
<td></td>
</tr>
</tbody>
</table>

Elaboration

In earlier grades, students have experienced vertical and horizontal number lines. Students will have started to develop an understanding of a coordinate system through graphing activities.

Students need to be able to label the axes of the first quadrant of the Cartesian plane. They should know that the horizontal axis is the x-axis and the vertical is the y-axis. Students should extend their knowledge of graphing to determine the location on a Cartesian plane using coordinates. Coordinates are written as an ordered pair and are written in brackets with a comma to separate the two numbers.

The first number in an ordered pair shows the distance from the origin (0, 0), along the horizontal axis (how far to move to the right). The second number shows the distance from the horizontal axis along a vertical line (how far to move up). Together these numbers are the ordered pair. For example, if we move 3 right and 4 up, the resulting ordered pair is (3, 4). Students need to know to always start at the origin (point where the 2 axes meet).

Students need to be able to determine the distance between points on a grid as well. In grade 6, students will be expected to figure out distance between two points either horizontally or vertically on the same line. A real-life application of this concept is determining distances between places on a map.

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:
- Unit 1, Lesson 5, pp. 24-28
- Unit 1, Unit Problem, pp. 42, 43
- Unit 8, Lesson 1, pp. 290-294
- Unit 2, Unit Problem, pp. 84, 85
SCO: **SS8: Identify and plot points in the first quadrant of a Cartesian plane using whole number ordered pairs.**

[C, CN, V]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:

- Label the axes of the first quadrant of a Cartesian plane and identify the origin.
- Plot a point in the first quadrant of a Cartesian plane given its ordered pair.
- Match points in the first quadrant of a Cartesian plane with their corresponding ordered pair.
- Plot points in the first quadrant of a Cartesian plane with intervals of 1, 2, 5, or 10 on its axes, given whole number ordered pairs.
- Draw shapes or designs, given ordered pairs in the first quadrant of a Cartesian plane.
- Determine the distance between points along horizontal and vertical lines in the first quadrant of a Cartesian plane.
- Draw shapes or designs in the first quadrant of a Cartesian plane and identify the points used to produce them.
SCO: **SS8:** Identify and plot points in the first quadrant of a Cartesian plane using whole number ordered pairs.

[C, CN, V]

Instructional Strategies

Consider the following strategies when planning lessons:

- Begin by drawing and labelling a coordinate grid on the board. Have students explore how they could use two numbers to describe a point on the grid. Introduce terminology such as ordered pair and the origin (0, 0). Also, have students use the words right and up (in this order) as they move along the grid.
- Select points on a grid and have students decide what 2 numbers name these points. If students say the numbers (1, 3) as “three, one” then simply remind that right is first then up.
- Create a picture as a class with labelled points and then distort the picture by increasing the x and y values. For example, the figure at right has the following distortion \((x+5, 2y)\).
- Play “4 in a row” with the class divided into two teams: “X’s or O’s”. Each student gets a turn to call out an ordered pair for his/her team. The first team to make 4 in a row wins. This will reinforce the use of the correct order of coordinates.

Suggested Activities

- Ask students to plot 10 points in quadrant 1 for which the difference between the first and second coordinate is 3.
- Give the partial coordinates of a square \((1, 2), (1, 7), (6, 2)\). Ask students to find the last point and label the coordinates.
- Give students a grid with 5 points on it and have them match these to 5 ordered pairs listed below it.
- Have students plot points on grids with different scales (e.g., intervals of ones, twos, fives, tens).
- Play “battleship” on the first quadrant of the Cartesian plane. Each player will need two copies of the grid; one grid to mark his/her ships on and one grid to keep track of the ordered pairs he/she is asking and whether or not it was a hit or miss.
- Have students reate “join-the-dots” pictures on a coordinate grid to reinforce locating coordinates. After they draw their pictures on a grid, they list the coordinates in order of connection. The list of coordinates can be given to other students who then use them to recreate the picture.
SCO: **SS8: Identify and plot points in the first quadrant of a Cartesian plane using whole number ordered pairs.**

[C, CN, V]

Assessment Strategies

- Give students a street map with grid lines on it. Have them determine the distance between locations on this map.
- Tell students that a town map is drawn on a grid. The fire station is at (40, 30). There are four fire hydrants, each 20 units from the station in a straight horizontal or vertical line. Have them draw and label axes on the grid, explaining what scale they used, plot the fire station, list the ordered pairs where the hydrants would be found and plot the points.
- Have students predict the shape that was created by plotting points and joining them with straight lines for the following coordinates: (3, 0), (4, 0), (5, 2), (4, 5), (3, 4), (2, 2). Have students then create the shape.
- Tell students that two objects were placed at (0, 4) and (3, 7) on a grid. Have them describe where the second object was placed in relation to the first. Then plot the points and check.
SCO: SS9: Perform and describe single transformations of a 2-D shape in the first quadrant of a Cartesian plane (limited to whole number vertices).
[C, CN, PS, T, V]

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS7 Perform a single transformation</td>
<td>SS9 Perform and describe single</td>
<td>SS5 Perform and describe transformations (translations, rotations or reflections) of a 2-D shape in all four quadrants of a Cartesian plane (limited to integral number vertices).</td>
</tr>
<tr>
<td>(translation, rotation, or reflection) of</td>
<td>transformations of a 2-D shape in the first quadrant of a Cartesian</td>
<td></td>
</tr>
<tr>
<td>a 2-D shape (with and without technology)</td>
<td>plane (limited to whole number vertices).</td>
<td></td>
</tr>
<tr>
<td>and draw and describe the image.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS8 Identify a single transformation,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>including a translation, rotation, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reflection of 2-D shapes.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elaboration

In Grade 5, students learned there are three transformations that change the location of an object in space, or the direction in which it faces, but not its size or shape. These are: translations, reflections, and rotations. These transformations are further explored in Grade 6 in outcomes SS6 and SS7. Students will also require knowledge of plotting coordinates on a Cartesian plane as described in SS8.

Students are expected to identify and perform these three types of transformations on a Cartesian plane, identify the coordinates of the new image (A'B'C'D': read as A prime, B prime, C prime and D prime) and describe the change (e.g., when the image below was translated each x coordinate increased by 4 because the shape was translated 4 units to the right). Examples of each of these are shown below.

![Diagram showing translation, reflection, and rotation](image)

For this outcome, students are only expected to perform a single transformation in the first quadrant.

This specific curriculum outcome is addressed in Math Makes Sense 6 in the following units:
- Unit 8, Lesson 2, pp. 295-300
- Unit 8, Technology Lesson, p. 301
- Unit 8, Game, p. 321
SCO: SS9: **Perform and describe single transformations of a 2-D shape in the first quadrant of a Cartesian plane (limited to whole number vertices).**
[C, CN, PS, T, V]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:

- Identify the coordinates of the vertices of a given 2-D shape (limited to the first quadrant of a Cartesian plane).
- Perform a transformation on a given 2-D shape and identify the coordinates of the vertices of the image (limited to the first quadrant).
- Describe the positional change of the vertices of a given 2-D shape to the corresponding vertices of its image as a result of a transformation (limited to first quadrant).
SCO: SS9: Perform and describe single transformations of a 2-D shape in the first quadrant of a Cartesian plane (limited to whole number vertices).
[C, CN, PS, T, V]

Instructional Strategies

Consider the following strategies when planning lessons:

- Provide students many opportunities to **translate** a given 2-D shape on a Cartesian plane on grid paper, identify the coordinates of the vertices and describe the positional change of the vertices.
- Provide students many opportunities to **rotate** a given 2-D shape on a Cartesian plane on grid paper, identify the coordinates of the vertices and describe the positional change of the vertices. Students may trace the original shape on wax or tracing paper and use the point of their pencil pressed down on the point of rotation to help them rotate the shape.
- Provide students many opportunities to **reflect** a given 2-D shape on a Cartesian plane on grid paper, identify the coordinates of the vertices and describe the positional change of the vertices. Students may use miras on the given line of reflection. Include opportunities where the line of reflection is horizontal, vertical, and diagonal.
- Have students discuss their predictions prior to performing a given transformation to a shape.
- Explore this concept in other curricular areas such as art and physical education.
- Provide shapes cut from cardstock that have vertices that fit on 1cm grid paper. Have them practice performing, drawing, and recording various transformations.

Suggested Activities

- Have students describe the direction as well as the size/magnitude of a given translation.
- Have students determine which transformation was performed on a given shape.
- Provide pattern blocks and have students practice each transformation and draw them on a Cartesian plane on grid paper.
- Have students choose a pattern block, perform a transformation of their choice, draw the transformation on a Cartesian plane on grid paper and have a partner describe the transformation that was performed, including the coordinates of the original vertices and the new image’s vertices.
- Ask students to perform
 - a rotation given the direction of the turn (clockwise or counter-clockwise), the degree or fraction of the turn (e.g., 90°, three quarter) and the point of rotation;
 - a translation given the direction and size/magnitude of the movement;
 - a reflection given the line of reflection and the distance from the line of reflection, limited to remaining in the first quadrant.
- Ask students to create a shape on the geoboard, perform a transformation of their choice, and describe the transformation that was performed. Then repeat this on a grid (limited to the 1st quadrant).
- Ask students to respond in their journal to the following prompts:
 - Explain using words and pictures if a translation can ever look like a reflection.
 - Explain using words and pictures how you know if a figure and its image shows a reflection, translation, or rotation.
SCO: SS9: Perform and describe single transformations of a 2-D shape in the first quadrant of a Cartesian plane (limited to whole number vertices).

[C, CN, PS, T, V]

Assessment Strategies

- Provide students with diagrams of different transformations and have them label each diagram with the type of transformation the diagram shows, including the coordinates of the vertices of both images.
- Have students draw a shape, translate it, and then describe the positional change of the vertices.
- Provide a 2-D shape and have students perform a rotation, reflection, or translation on grid paper of that shape, label and identify the coordinates of the vertices of both images and describe the positional change.
- Ask students to explain the differences and similarities among the three different transformations with regard to the Cartesian plane and the coordinates of the figure and its image.
- Have students explain using words and pictures how you know if a figure and its image show a reflection, translation, or rotation.
- Provide the coordinates for a shape and its transformation. Have students plot and draw both shapes and describe the transformation that has occurred.
STATISTICS AND PROBABILITY
SCO: **SP1: Create, label and interpret line graphs to draw conclusions.**

[C, CN, PS, R, V]

<table>
<thead>
<tr>
<th>Communication</th>
<th>Problem Solving</th>
<th>Connections</th>
<th>Mental Math and Estimation</th>
</tr>
</thead>
</table>

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP2 Construct and interpret double bar graphs to draw conclusions.</td>
<td>SP1 Create, label and interpret line graphs to draw conclusions.</td>
<td>SP3 Construct, label and interpret circle graphs to solve problems.</td>
</tr>
</tbody>
</table>

Elaboration

Statistical literacy is a life skill that effective citizens use to read, question, and interpret data in our world. Graphs tell a story, so both the creator and the reader of the graph need to think about the message that is being shared.

Students have investigated about tables of values and describing patterns and relationships using graphs and tables in outcomes PR1 and PR2.

The points on a line graph are plotted to show relationships between two variables. The distinction between continuous and discrete data should be emphasized as students investigate line graphs. **Continuous data** includes an infinite number of values between two points and is shown by joining the data points with a straight line making it easier to focus on trends implicit in the data. Points on the line between the plotted points have meaning. **Discrete data** has a finite number of values (i.e., data that can be counted such as the number of pets), and therefore, the points in the graph should not be connected.

If the plotted points are not joined by straight lines because they represent discrete data, they may be called broken-line graphs or a series of plotted points. Every point on the line should have a value, thus a line graph can also be used to show values between points on the graph. Students should be able to determine the value of the plotted data points and those points between points.

Line graphs should include a **title**, **labelled categories (including units)**, **labelled axes**, an **appropriate scale** and **correctly plotted points**. It is suggested that grade six students follow this criteria when creating a graph, although there is some variation in creation of graphs when graphs from the internet, newspapers, and/or books are examined. Be sure to expose students to a variety of graphs; this exposure will encourage thinking and discussion that will promote flexibility in one’s mathematical thinking.

The purpose of a line graph is to focus on trends implicit in the data. For example, if students measure the temperature outside every hour during a school day, they could create a graph in which the ordered pairs (hour, temperature) are plotted. By connecting the points with line segments, they see the trend in the temperature. This type of exploration of line graphs links to plotting points in the first quadrant of a Cartesian plane in outcome SS8. If a graph is not showing all the numbers in the scale, then a jagged line can be used to indicate the omission of some values. Ensure that the construction of the line graph and interpretation of the data are not addressed independently; when students take the time to construct line graphs, they should be used for interpretation.

This specific curriculum outcome is addressed in **Math Makes Sense 6** in the following units:

- Unit 7, Lesson 3, pp. 259-262
- Unit 7, Lesson 4, pp. 263-266
SCO: **SP1: Create, label and interpret line graphs to draw conclusions.**

[C, CN, PS, R, V]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:
- Determine the common attributes (title, axes and intervals) of line graphs by comparing a given set of line graphs.
- Determine whether a given set of data can be represented by a line graph (continuous data) or a series of points (discrete data) and explain why.
- Create a line graph from a given table of values or set of data.
- Interpret a given line graph to draw conclusions.
SCO: **SP1: Create, label and interpret line graphs to draw conclusions.**
[C, CN, PS, R, V]

Instructional Strategies
Consider the following strategies when planning lessons:

- Ensure students are aware of the parts of line graphs (i.e. titles, labels, scales, etc.) using real graphs that are interesting to students.
- Introduce this concept with tables of values or sets of data to create line graphs, starting with plotting points and then connecting them.
- Provide real-world line graphs and ask questions that require students to read and interpret the information found there.
- Integrate the use of technology to construct line graphs. It is important that students also have the experience of creating graphs with paper-and-pencil methods.
- Use websites such as Statistics Canada (http://www.statcan.gc.ca/) or Elections Canada (www.democracy-democratie.ca) for up-to-date data and related resources.

Suggested Activities

- Have students collect information about the number of students in the school in Grades 1, 2, 3, 4, and 5 and draw a line plot to help show whether there are differences in the number of students in certain grades. Remind students to carefully consider the step size for the vertical scale.
- Have students record the changes in temperature over time during the day/week and create an appropriate line graph and label the title, axes, and scales.
- Ask students to look up the hockey scores for a favourite team over the course of 10 games and then create a line graph with the ordered pairs (game number, number of goals scored by favourite team). Have them create a second graph with the ordered pairs (game number, goals scored by opposing team) and then compare the two graphs.
- Using discrete data, ask groups of students to use the data to create either a broken line graph (also called a series of plotted points) or a bar graph. Discuss with students that the both types of graphs may be chosen to represent the information. Have students examine both types of graphs. Which graph provides the better message to the reader? Which graph has more visual impact? When might you choose a bar graph rather than a broken-line graph (series of points)? When might you choose a broken-line graph (series of points) rather than a bar graph?
- Refer to the graph in *Science & Technology: Space* on page 26. Does this graph represent continuous data or discrete data? How do you know? Discuss why they chose to use plotted points rather than a bar graph for this discrete data.
SCO: **SP1: Create, label and interpret line graphs to draw conclusions.**

[C, CN, PS, R, V]

Assessment Strategies

- Provide students with two line graphs displaying similar data (such as temperature change over time in two different areas) and have students write comparison statements based on the data shown.
- Have students create a line graph based on the following information using appropriate scales, labels, and title.

<table>
<thead>
<tr>
<th>Number of Cups</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (mL)</td>
<td>250</td>
<td>500</td>
<td>750</td>
<td>1000</td>
</tr>
</tbody>
</table>

- Have students explain (in words or pictures) the difference between continuous and discrete data.
- Provide an example of a line graph. Have students create three questions which can be answered from the graph.
- Have students explain three situations where a line graph would be appropriate to use.
- Provide a broken-line graph and have students explain why line graphs are not always linear.
- Have students create a line graph based on the table below. Have them determine about how much rain fell by 5:30 p.m. If the rain continues to fall steadily at the same rate, about how much will fall by 8:00 p.m.?

<table>
<thead>
<tr>
<th>Time of Day</th>
<th>2:00 p.m.</th>
<th>3:00 p.m.</th>
<th>4:00 p.m.</th>
<th>5:00 p.m.</th>
<th>6:00 p.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total rainfall</td>
<td>3 mm</td>
<td>5 mm</td>
<td>7 mm</td>
<td>9 mm</td>
<td>11 mm</td>
</tr>
</tbody>
</table>
SCO: **SP2: Select, justify and use appropriate methods of collecting data, including:**

- questionnaires
- experiments
- databases
- electronic media.

[C, PS, T]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[T] Technology</td>
<td>[V] Visualization</td>
<td>[R] Reasoning</td>
<td></td>
</tr>
</tbody>
</table>

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1</td>
<td>Differentiate between first-hand and second-hand data.</td>
<td>SP2</td>
</tr>
</tbody>
</table>

Elaboration

One often wishes to gather information about a large population, but does not have the ability to check every person involved. In situations such as these, samples are used. One then generalizes to the entire population, recognizing that conclusions drawn from the sample may not be perfectly true for the entire group, but trying to choose the sample to minimize the degree of error.

Students should consider both how to choose samples and how safe it is to generalize to the full populations. For example, suppose one wanted to determine people’s favourite take-out food. It would not be wise to choose a sample of patrons of Pizza Palace. Clearly, that sample could be biased in favour of pizza.

In choosing a sample, students should carefully consider the information being sought and how a person answering (a) question(s) could be biased. For example, if students want to find what radio station is most popular, they should probably consider:
- the mix of ages within the sample;
- the gender distribution within the sample;
- the availability of a variety of stations to those sampled;
- the time of day (some stations are likely more attractive to listeners at a particular time of day).

A sample should be constructed to deal with such potential biases.

From grade 5, students will realize that although some data is collected first-hand by interviewing or observing, much of the data to which they are exposed is second-hand data. Students should explore, through discussion, how such data might be collected and how reliable they feel it is. For example, if students read that 30% of children in Canada are not physically fit, what might they wonder about the data source? Was a sample used? Were children tested directly or was data collected by asking doctors or teachers? Students should realize that they must be careful about drawing conclusions from reported data. Becoming familiar with sources for different types of data would be valuable to students.

A questionnaire is really a collection of survey questions on the same topic. An experiment is a test you set up to answer a particular question. A database is an organized collection of large amounts of related data. Examples of electronic media that should be used are spreadsheets, Internet sites (Stats Canada, music database, Guinness World Records, or NHL / NBA / MLB).
SCO: **SP2: Select, justify and use appropriate methods of collecting data, including:**
- questionnaires
- experiments
- databases
- electronic media.

[C, PS, T]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:

- Select a method for collecting data to answer a given question and justify the choice.
- Design and administer a questionnaire for collecting data to answer a given question, and record the results.
- Answer a given question by performing an experiment, recording the results and drawing a conclusion.
- Explain when it is appropriate to use a database as a source of data.
- Gather data for a given question by using electronic media including selecting data from databases.

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:

- Unit 7, Lesson 1, pp. 248-251
- Unit 7, Technology Lesson, p. 252
- Unit 7, Lesson 2, pp. 255-258
SCO: SP2: Select, justify and use appropriate methods of collecting data, including:
- questionnaires
- experiments
- databases
- electronic media.
[C, PS, T]

Instructional Strategies
Consider the following strategies when planning lessons:

- Have students collect data to solve problems that are relevant to them. Begin by having students choose good survey questions with a limited number of answers (possibly “Other” as one choice). The response options should be discrete and not overlap.
- Have students design questionnaires with the audience and situation in mind. Students should be made aware that many factors have the potential to effect the results, including bias and sample size.
- Ensure students realize that data can be primary (collected directly by students) or secondary (collected by others).
- Use websites such as Statistics Canada (http://www.statcan.gc.ca/kits-trousses/cyb-adc2001/edu04_0035e-eng.htm) as a source of data and additional information on statistics and various data displays.

Suggested Activities

- Have students find the answer to “Which hockey player scored the most goals in one season?” using Internet/electronic media databases.
- Have students design and conduct experiments to answer a question. For example, an experiment could be on memory where 20 items are viewed for one minute then covered and the subject has to name as many as they can.
- Have students, in pairs, design a questionnaire for a given question, administer it, and record the results.
- Ask students what sample/data source they would use to answer questions such as the amount of water an average Canadian uses in a day.
- Have students design a questionnaire on problems such as: “What nutritious snacks should be placed in our vending machines?” or “How many hours do grade six students spend using the Internet each day?” Have students collect the data and later graph the results (outcome SP3).
SCO: **SP2**: Select, justify and use appropriate methods of collecting data, including:
- questionnaires
- experiments
- databases
- electronic media.
[C, PS, T]

Assessment Strategies

- Ask students why a sample of 5-year-olds might not be the best one to find out what playground equipment a school should have.
- Provide two sample survey questions. Ask students which is better? Have students give a reason for their choice.
 a) How many brothers and sisters do you have? ___
 b) Are you a member of a large family? Yes ___ No ___
- Have students, in pairs, design a questionnaire for a given question, administer it, and record the results.
- Have students use a spinner and record the results. Ask if they are able use the results to draw a conclusion on the following question: What is the favourite color of students in grade 6? Explain.
SCO: SP3: Graph collected data and analyze the graph to solve problems.
[C, CN, PS]

[T] Technology [V] Visualization [R] Reasoning

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP2 Construct and interpret double bar graphs to draw conclusions.</td>
<td>SP3 Graph collected data and analyze the graph to solve problems.</td>
<td>SP3 Construct, label and interpret circle graphs to solve problems.</td>
</tr>
</tbody>
</table>

Elaboration

Students should regularly use pictographs, bar graphs, double bar graphs, and line graphs to display and organize data. Data can be collected in surveys, through experiments or through research. Topics may include areas of mathematics, other curricular areas and real-life situations. For example, students might gather information about the ages of their grandparents and display it in various types of graphs.

Students should recognize that a line graph would not be appropriate for information, since the data is not continuous. It is a count of the number of grandparents in each age range.

When creating graphs, students need to include a title, labelled categories (including units), labelled axis, an appropriate scale and correctly plotted points, bars or pictures. If a legend or key is needed, then students need to provide that information on their graph.

It is also important for students to explore the various types of data displays (line, bar, pictograph) and how these different displays are not always equally effective or appropriate. Students may wish to explore circle graphs as they are a common type of data display, however, they will study these in grade 7.

Students need to realize that data should be collected to answer questions and solve relevant problems.

This specific curriculum outcome is addressed in Math Makes Sense 6 in the following units:
- Unit 7, Lesson 4, pp. 263-266
- Unit 7, Lesson 5, pp. 267-270
- Unit 7, Unit Problem, pp. 286, 287
SCO: **SP3: Graph collected data and analyze the graph to solve problems.**

[C, CN, PS]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:

- Determine an appropriate type of graph for displaying a set of collected data and justify the choice of graph.
- Solve a given problem by graphing data and interpreting the resulting graph.
SCO: **SP3: Graph collected data and analyze the graph to solve problems.**
[C, CN, PS]

Instructional Strategies
Consider the following strategies when planning lessons:

- Collect data as a class or individually. Have students to place the data in a table, and choose an appropriate graph to display it. Ask students to explain their reasoning for their choice of graph.
- Use the Internet as a source of data and possible lesson ideas such as:
 - Statistics Canada Statistics Canada (www.statscan.ca)
 - Internet Movie Database (www.imdb.com).
- Examine many real-world pictographs, bar, double-bar, and line graphs gathered from newspapers, magazines, and other print media. Discuss why the choice of format is appropriate in each case. Ask students questions that can be answered through careful analysis of the graph.
- Provide meaningful questions that students can answer by gathering and graphing data. Examples:
 - We’re having a sock hop and need to choose some CD’s. What are the most popular styles of music?
 - What were the most frequently observed types of insects from our Science “Variety of Life” activity?
 - If we order t-shirts for our school, what are the most popular sizes we need to get?
 - What are the distances our paper airplanes travelled in our “Flight” experiment?
 - We need to track the number of apples sold at our canteen over the past 6 weeks so we’ll know how many more to order.

Suggested Activities

- Use these ideas as classroom questions to collect data, graph, and analyze:
 - Favourites: TV show, types of music, musical band, sports team, video games;
 - Numbers: number of pets, brothers/sisters, hours watching TV, hours on Instant Messaging/computer;
 - Measures: sitting height, arm span, area of foot, time on the bus.
- Present students with “real life” survey questions such as students’ satisfaction with cafeteria food, the most popular noon hour activity, or whether students would like to have a school uniform. Have them collect the data, display it with an appropriate graph and interpret the results.
- Give groups of students examples of different types of graphs. Have them create reasons for when and why we would use this type of graph. Combine ideas and have students present their findings. Students could also create a list of questions relating to the graph that could then be analyzed.
SCO: **SP3: Graph collected data and analyze the graph to solve problems.**

[C, CN, PS]

Assessment Strategies

- Have students determine an appropriate type of graph for displaying a set of data and justify the choice of graph.
- Ask students to describe the purpose of each type of graph and give examples of appropriate and inappropriate use for each.
- Provide a graph. Ask students to write everything they can tell from it. Have them graph the same data using a different format and discuss which more clearly depicts the information.
- Have students answer a given question by performing an experiment or collecting data. Students should record the results, graph the data, and draw conclusions based on the graph.
- Provide a collection of data and have students graph the information. Consider the student’s choice of graph format and the presence of title, labels, appropriate scales, and accurate data representation.
- Provide a graph and ask students questions that require careful analysis of the data shown.
SCO: SP4: Demonstrate an understanding of probability by:
- identifying all possible outcomes of a probability experiment
- differentiating between experimental and theoretical probability
- determining the theoretical probability of outcomes in a probability experiment
- determining the experimental probability of outcomes in a probability experiment
- comparing experimental results with the theoretical probability for an experiment.

[C, ME, PS, T]

Scope and Sequence

<table>
<thead>
<tr>
<th>Grade Five</th>
<th>Grade Six</th>
<th>Grade Seven</th>
</tr>
</thead>
</table>
| SP3 Describe the likelihood of a single outcome occurring using words, such as: impossible; possible; certain. | SP4 Demonstrate an understanding of probability by:
 - identifying all possible outcomes of a probability experiment
 - differentiating between experimental and theoretical probability
 - determining the theoretical probability of outcomes in a probability experiment
 - determining the experimental probability of outcomes in a probability experiment
 - comparing experimental results with the theoretical probability for an experiment. | SP4 Express probabilities as ratios, fractions and percents. |
| SP4 Compare the likelihood of two possible outcomes occurring using words, such as: less likely; equally likely; more likely. | | |

Elaboration

Probability is a measure of how likely an event is to occur. Probability is about predictions of events over the long term rather than predictions of individual, isolated events. Theoretical probability can sometimes be obtained by carefully considering the possible outcomes and using the rules of probability. For example, in flipping a coin, there are only two possible outcomes, so the probability of flipping a head is, in theory, \(\frac{1}{2} \).

Often in real-life situations involving probability, it is not possible to determine theoretical probability. We must rely on observation of several trials (experiments) and a good estimate, which can often be made through a data collection process. This is called experimental probability.

Theoretical probability of an event is the ratio of the number of favourable outcomes in an event to the total number of possible outcomes, when all possible outcomes are equally likely.

\[
\text{Theoretical probability} = \frac{\text{Number of favourable outcomes}}{\text{Total number of possible outcomes}}
\]

Experimental probability or relative frequency of an event is the ratio of the number of observed successful occurrences of the event to the total number of trials. The greater the number of trials, the closer the experimental probability approaches the theoretical probability. Before conducting experiments, students should predict the probability whenever possible.

\[
\text{Experimental probability} = \frac{\text{Number of observed successful occurrences}}{\text{Total number of trials in the experiment}}
\]
SCO: **SP4:** Demonstrate an understanding of probability by:
- identifying all possible outcomes of a probability experiment
- differentiating between experimental and theoretical probability
- determining the theoretical probability of outcomes in a probability experiment
- determining the experimental probability of outcomes in a probability experiment
- comparing experimental results with the theoretical probability for an experiment.

[C, ME, PS, T]

Achievement Indicators

Students who have achieved this outcome(s) should be able to:
- List the possible outcomes of a probability experiment, such as:
 - tossing a coin
 - rolling a die with a given number of sides
 - spinning a spinner with a given number of sectors.
- Determine the theoretical probability of an outcome occurring for a given probability experiment.
- Predict the probability of a given outcome occurring for a given probability experiment by using theoretical probability.
- Conduct a probability experiment, with or without technology, and compare the experimental results to the theoretical probability.
- Explain that as the number of trials in a probability experiment increases, the experimental probability approaches theoretical probability of a particular outcome.
- Distinguish between theoretical probability and experimental probability, and explain the differences.

This specific curriculum outcome is addressed in *Math Makes Sense 6* in the following units:
- Unit 7, Lesson 6, pp. 271-275
- Unit 7, Lesson 7, pp. 276-279
- Unit 7, Technology Lesson, p. 280
- Unit 7, Game, p. 281
- Unit 7, Lesson 8, pp. 282, 283
- Unit 7, Unit Problem, pp. 286, 287
SCO: SP4: Demonstrate an understanding of probability by:
- identifying all possible outcomes of a probability experiment
- differentiating between experimental and theoretical probability
- determining the theoretical probability of outcomes in a probability experiment
- determining the experimental probability of outcomes in a probability experiment
- comparing experimental results with the theoretical probability for an experiment.
[C, ME, PS, T]

Instructional Strategies
Consider the following strategies when planning lessons:

- Introduce students to simulations: experiments which indirectly model a situation. Students will have had experience directly determining experimental probabilities in grade 5. An example of a simulation is creating a spinner that represents a basketball player who makes their free throws 8 times in 10. The spinner has 0.8 of the face labelled HIT and 0.2 labelled MISS. This can also be simulated with a 10-sided dice: the numbers 1 to 8 representing HITS and numbers 9 and 10 representing MISSES. Either model can be used to simulate:
 - the probability of making exactly 3 shots in the next 5 tries;
 - the probability of missing the first shot, but making the next 3 in a row;
 - the probability of missing 5 shots in a row.

- Students will often be presented with situations for which outcomes are equally likely. In these cases, they should list the outcomes and count the number of items on the list to determine probabilities. Students must also recognize, however, when outcomes are not equally likely and take this into account. For example, using the spinner shown, the student might list the outcomes as “red,” “yellow” and “blue” and assume that since there are 3 outcomes, each has a probability of $\frac{1}{3}$. This, however, is not the case. Students might benefit from reconfiguring the spinner to show equally likely outcomes by dividing the red section into two equal pieces. Now the outcomes might be “red 1,” “red 2,” “yellow” and “blue” and each outcome would now have a probability of $\frac{1}{4}$. Because there are two red sections, the probability of red is, therefore, $\frac{2}{4}$.

Suggested Activities

- Have students determine approximately how many boxes of cereal will need to be purchased before a consumer collects each of six possible prizes contained therein. This simulation can be performed by rolling a die, recording the prize number won (based on the roll of the die), continuing until at least one of each number is rolled, repeating the experiment several times and determining, on average, the number of rolls (purchases) required.
- Tell students that a particular baseball player has an average of .250 (i.e., he gets 1 hit in 4 times at bat, on average). Ask students to conduct a simulation to determine the probability that the player will get a hit each time at bat in a particular game.
- Have students explain how a scientific experiment is like a probability experiment, explaining the differences between theory/hypothesis and experimental results?
SCO: SP4: Demonstrate an understanding of probability by:
- identifying all possible outcomes of a probability experiment
- differentiating between experimental and theoretical probability
- determining the theoretical probability of outcomes in a probability experiment
- determining the experimental probability of outcomes in a probability experiment
- comparing experimental results with the theoretical probability for an experiment.
[C, ME, PS, T]

Assessment Strategies

- Ask students to create a spinner for which there are 6 equally likely outcomes and another spinner for which the 6 outcomes are not equally likely. Have them predict the probability for each spinner’s outcomes.
- Ask students: Why would you use a die to conduct a simulation to determine the number of cereal boxes you would need to purchase to collect each of six possible prizes, but a different device if there were 10 possible prizes?
- Have students predict how many goals will be scored in 24 shots by rolling a die where the number 1 is a goal and the numbers 2 to 6 are misses. Conduct the experiment, and compare results for more than one team.
- Ask students to list the equally likely outcomes that result when two dice are rolled and the numbers are subtracted, conduct the experiment 6 times and compare theoretical and experimental. Then conduct 12 times and compare with the first results. Explain what happens when you increase the number of trials in a probability experiment.
- Ask students to list the equally likely outcomes that result when two cubes are pulled from a bag with 10 red cubes and 5 blue ones.
- Have students explain how a scientific experiment is like a probability experiment, explaining the differences between theory/hypothesis and experimental results?
MENTAL MATH

Fact Learning
Mental Computation
Estimation
Mental Math in the Elementary Mathematics Curriculum

Mental math in this guide refers to fact learning, mental computation, and computational estimation. The Prince Edward Island Mathematics Curriculum supports the acquisition of these skills through the development of thinking strategies across grade levels.

Pre-Operational Skills

Many children begin school with a limited understanding of number and number relationships. Counting skills, which are essential for ordering and comparing numbers, are an important component in the development of number sense. Counting on, counting back, concepts of more and less, and the ability to recognize patterned sets, all mark advances in children’s development of number ideas.

Basic facts are mathematical operations for which some students may not be conceptually prepared.

Basic facts are mathematical operations for which some students may not be conceptually prepared. As a minimum, the following skills should be in place before children are expected to acquire basic facts.

- Students can immediately name the number that comes after a given number from 0-9, or before a given number from 2-10.
- When shown a familiar arrangement of dots ≤ 10 on ten frames, dice, or dot cards, students can quickly identify the number without counting.
- For numbers ≤ 10 students can quickly name the number that is one-more, one-less; two-more, two-less. (The concept of less tends to be more problematic for children and is related to strategies for the subtraction facts.)

Fact learning is a mental exercise with an oral and/or visual prompt; the focus is oral, rather than paper-and pencil; drills should be short with immediate feedback over an extended period of time.
Curriculum Outcomes

Grade 1

N1 - Say the number sequence, 1 to 100 by:
- 1s forward between any two given numbers
- 2s to 20, forward starting at 0
- 5s and 10s to 100, forward starting at 0

N2 - Recognize, at a glance, and name familiar arrangements of 1 to 10 objects or dots (subitize).

N3 - Demonstrate an understanding of counting by:
- indicating that the last number said identifies “how many”
- showing that any set has only one count
- using the counting on strategy
- using parts or equal groups to count sets

N5 - Compare sets containing up to 20 elements to solve problems using:
- referents
- one-to-one correspondence

N6 - Estimate quantities to 20 by using referents.

N8 - Identify the number, up to 20, that is one more, two more, one less and two less than a given number.

N9 - Demonstrate an understanding of addition of numbers with answers to 20 and their corresponding subtraction facts, concretely, pictorially and symbolically by:
- using familiar and mathematical language to describe additive and subtractive actions from their experience
- creating and solving problems in context that involve addition and subtraction
- modeling addition and subtraction using a variety of concrete and visual representations, and recording the process symbolically.

N10 - Describe and use mental mathematics strategies (memorization not intended), such as:
- counting on and counting back
- making 10
- doubles
- using addition to subtract
to determine the basic addition facts to 18 and related subtraction facts

Grade 2

N1 - Say the number sequence, 0 to 100 by:
- 2s, 5s and 10s, forward and backward, using starting points that are multiples of 2, 5 and 10 respectively
- 10s using starting points 1 to 9
- 2s starting from 1.

N6 - Estimate quantities to 100 using referents.

N9 - Demonstrate an understanding of addition (limited to 1 and 2-digit numerals) with answers to 100 and the corresponding subtraction by:
- using personal strategies for adding and subtracting with and without the support of manipulatives
- creating and solving problems that involve addition and subtraction
- explaining that the order in which numbers are added does not affect the sum
- explaining that the order in which numbers are subtracted may affect the difference.

N10 - Apply mental mathematics strategies, such as:

Thinking Strategies

Pre-Operation
- Patterned Set Recognition
- Part-Part-Whole Relationships
- Counting On and Back
- Next Number
- Ten-Frame Visualization for Numbers 1-10
- One More / One Less, Two More/Two Less Relationships

Addition Facts With Answers to 20
- Doubles
- Plus 1 Facts
- Plus 2 Facts
- Plus 3 Facts

Corresponding Subtraction Facts
- Think-Addition
- Ten Frame Visualization
- Counting Back

Adding 10 to a Number

Addition Facts Extended to Numbers in the 10s
...continued

Front-End Addition Finding
• using doubles
• making 10
• one more, one less
• two more, two less
• building on a known double
• addition for subtraction
to determine basic addition facts to 18 and related subtraction facts.

<table>
<thead>
<tr>
<th>Curriculum Outcomes</th>
<th>Thinking Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 3</td>
<td>Thinking Strategies</td>
</tr>
<tr>
<td>N1 Say the number sequence forward and backward from 0 to 1 000 by:</td>
<td>Multiplication Facts</td>
</tr>
<tr>
<td>• 5s, 10s or 100s using any starting point</td>
<td>• x 2 Facts</td>
</tr>
<tr>
<td>• 3s using starting points that are multiples of 3</td>
<td>• Fives</td>
</tr>
<tr>
<td>• 4s using starting points that are multiples of 4</td>
<td>• Ones</td>
</tr>
<tr>
<td>• 25s using starting points that are multiples of 25.</td>
<td>• Tricky Zeros</td>
</tr>
<tr>
<td>N4 Estimate quantities less that 1 000 using referents.</td>
<td>• Fours</td>
</tr>
<tr>
<td>N6 Describe and apply mental mathematics strategies for adding two 2-digit numerals, such as:</td>
<td>• Threes</td>
</tr>
<tr>
<td>• adding from the left to right</td>
<td>Break Up and Bridge</td>
</tr>
<tr>
<td>• taking one addend to the nearest multiple of ten and then compensating</td>
<td>Front-End Estimation for Addition and Subtraction</td>
</tr>
<tr>
<td>• using doubles</td>
<td>Adjusted Front-End</td>
</tr>
<tr>
<td>N7 Describe and apply mental mathematics strategies for subtracting two 2-digit numerals, such as:</td>
<td>Estimation for Addition and Subtraction</td>
</tr>
<tr>
<td>• taking the subtrahend to the nearest multiple of ten and then compensating</td>
<td>...continued</td>
</tr>
<tr>
<td>• thinking of addition</td>
<td></td>
</tr>
<tr>
<td>• using doubles</td>
<td></td>
</tr>
</tbody>
</table>
- relating multiplication to repeated addition
- relating multiplication to division

N12 - Demonstrate an understanding of division by:
- representing and explaining division using equal sharing and equal grouping
- creating and solving problems in context that involve equal sharing and equal grouping
- modeling equal sharing and equal grouping using concrete and visual representations, and recording the process symbolically
- relating division to repeated subtraction
- relating division to multiplication

 limited to division related to multiplication facts up to products of 36 with single digit factors

<table>
<thead>
<tr>
<th>Grade 4</th>
</tr>
</thead>
</table>
| **N3** - Demonstrate an understanding of addition of numbers with answers to 10 000 and their corresponding subtractions (limited to 3 and 4-digit numerals) by:
- using personal strategies for adding and subtracting
- estimating sums and differences
- solving problems involving addition and subtraction. |

| **N5** - Describe and apply mental mathematics strategies, such as:
- skip counting from a known fact
- using doubling or halving
- using doubling or halving and adding or subtracting one more group
- using patterns in the 9s facts to determine basic multiplication facts to 9x9 and related division facts. |

| **N6** - Demonstrate an understanding of multiplication (2- or 3-digit by 1-digit) to solve problems by:
- using personal strategies for multiplication with and without concrete materials
- using arrays to represent multiplication
- connecting concrete representations to symbolic representations
- estimating products. |

| **N7** - Demonstrate an understanding of division (1-digit divisor and up to 2-digit dividend) to solve problems by:
- using personal strategies for dividing with and without concrete materials
- estimating quotients
- relating division to multiplication. |

| **N11** - Demonstrate an understanding of addition and subtraction of decimals (limited to hundredths) by:
- using compatible numbers
- estimating sums and differences
- using mental math strategies to solve problems. |

<table>
<thead>
<tr>
<th>Make 10s, 100s, 1 000s for Addition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtraction Facts Extended to Numbers in the 10s, 100s, and 1000s</td>
</tr>
<tr>
<td>Compensation (new for subtraction)</td>
</tr>
<tr>
<td>Break Up and Bridge (new for subtraction)</td>
</tr>
<tr>
<td>Multiplication Facts to 9 x 9</td>
</tr>
</tbody>
</table>
- Doubles / x 2 Facts
- Fives / Clock Facts
- Ones
- Tricky Zeros
- Fours
- Threes
- Nifty Nines
- Last Six Facts |

| Multiply by 10 and 100 using a place-value-change strategy |

Mental mathematics must be a consistent part of instruction in computation from primary through the elementary and middle grades.
<table>
<thead>
<tr>
<th>Curriculum Outcomes</th>
<th>Thinking Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 5</td>
<td></td>
</tr>
<tr>
<td>N2- Use estimation strategies including:</td>
<td>Balancing for a Constant Difference</td>
</tr>
<tr>
<td>• front-end rounding</td>
<td></td>
</tr>
<tr>
<td>• compensation</td>
<td>Multiply by 0.1, 0.01, 0.001 using a place-value-change strategy</td>
</tr>
<tr>
<td>• compatible umbers in problem-solving contexts.</td>
<td></td>
</tr>
<tr>
<td>N3- Apply mental mathematics strategies and number properties, such as:</td>
<td>Front-End Multiplication (Distributive Principle)</td>
</tr>
<tr>
<td>• skip counting from a known fact</td>
<td></td>
</tr>
<tr>
<td>• using doubling or halving</td>
<td>Compensation in Multiplication</td>
</tr>
<tr>
<td>• using patterns in the 9s facts</td>
<td></td>
</tr>
<tr>
<td>• using repeated doubling or halving</td>
<td></td>
</tr>
<tr>
<td>to determine answers for basic multiplication facts to 81 and related division facts.</td>
<td></td>
</tr>
<tr>
<td>N4- Apply mental mathematics strategies for multiplication, such as:</td>
<td>Rounding in Multiplication</td>
</tr>
<tr>
<td>• annexing then adding zero</td>
<td>Divide by 10, 100, 1000 using a place-value-change strategy</td>
</tr>
<tr>
<td>• halving and doubling</td>
<td></td>
</tr>
<tr>
<td>• using the distributive property.</td>
<td>Related Division Facts</td>
</tr>
<tr>
<td></td>
<td>• “Think multiplication”</td>
</tr>
</tbody>
</table>

By grade 5, students should possess a variety of strategies to compute mentally. It is important to recognize that these strategies develop and improve over the years with regular practice.

<table>
<thead>
<tr>
<th>Grade 6</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N2- Solve problems involving large numbers, using technology.</td>
<td>Divide by 0.1, 0.01, 0.001 using a place-value-change strategy</td>
</tr>
<tr>
<td>N8- Demonstrate an understanding of multiplication and division of decimals (1-digit whole number multipliers and 1-digit natural number divisors).</td>
<td>Finding Compatible Factors (Associative Property)</td>
</tr>
<tr>
<td></td>
<td>Halving and Doubling</td>
</tr>
<tr>
<td></td>
<td>Using division facts for 10's, 100's, 1000's</td>
</tr>
<tr>
<td></td>
<td>Partitioning the Dividend (Distributive Property)</td>
</tr>
</tbody>
</table>

By grade 5, students should possess a variety of strategies to compute mentally. It is important to recognize that these strategies develop and improve over the years with regular practice.
Definitions and Connections

Fact learning refers to the acquisition of the 100 number facts relating to the single digits 0-9 in each of the four operations. Mastery is defined by a correct response in 3 seconds or less.

Mental computation refers to using strategies to get exact answers by doing most of the calculations in one’s head. Depending on the number of steps involved, the process may be assisted by quick jottings of sub-steps to support short term memory.

Computational estimation refers to using strategies to get approximate answers by doing calculations mentally.

Students develop and use thinking strategies to recall answers to basic facts. These are the foundation for the development of other mental calculation strategies. When facts are automatic, students are no longer using strategies to retrieve them from memory.

Basic facts and mental calculation strategies are the foundations for estimation. Attempts at estimation are often thwarted by the lack of knowledge of the related facts and mental math strategies.

Computational Fluency

Fact Learning

Mental Computation

Estimation
Rationale

In modern society, the development of mental computation skills needs to be a goal of any mathematical program for two important reasons. First of all, in their day-to-day activities, most people’s calculation needs can be met by having well developed mental computational processes. Secondly, while technology has replaced paper-and-pencil as the major tool for complex computations, people still need to have well developed mental strategies to be alert to the reasonableness of answers generated by technology.

Besides being the foundation of the development of number and operation sense, fact learning is critical to the overall development of mathematics. Mathematics is about patterns and relationships and many of these are numerical. Without a command of the basic facts, it is very difficult to detect these patterns and relationships. As well, nothing empowers students more with confidence, and a level of independence in mathematics, than a command of the number facts.

Teaching Mental Computation Strategies

The development of mental math skills in the classroom should go beyond drill and practice by providing exercises that are meaningful in a mathematical sense. All of the strategies presented in this guide emphasize learning based on an understanding of the underlying logic of mathematics.

While learning addition, subtraction, multiplication and division facts, for instance, students learn about the properties of these operations to facilitate mastery. They apply the commutative property of addition and multiplication, for example, when they discover that $3 + 7$ is the same as $7 + 3$ or that $3 \times 7 = 7 \times 3$. Knowing this greatly reduces the number of facts that need to be memorized. They use the distributive property when they learn that 12×7 is the same as $(10 + 2) \times 7 = (7 \times 10) + (2 \times 7)$ which is equal to $70 + 14 = 84$.

Understanding our base ten system of numeration is key to developing computational fluency. At all grades, beginning with single digit addition, the special place of the number 10 and its multiples is stressed.
Understanding our base ten system of numeration is key to developing computational fluency. At all grades, beginning with single digit addition, the special place of the number 10 and its multiples is stressed. In addition, students are encouraged to add to make 10 first, and then add beyond the ten. Addition of ten and multiples of ten is emphasized, as well as multiplication by 10 and its multiples.

Connections between numbers and the relationship between number facts should be used to facilitate learning. The more connections that are established, and the greater the understanding, the easier it is to master facts. In multiplication, for instance, students learn that they can get to 6 x 7 if they know 5 x 7, because 6 x 7 is one more group of 7.

Introducing Thinking Strategies to Students

In general, a strategy should be introduced in isolation from other strategies. A variety of practice should then be provided until it is mastered, and then it should be combined with other previously learned strategies. Knowing the name of a strategy is not as important as knowing how it works. That being said, however, knowing the names of the strategies certainly aids in classroom communication. In the mental math guides for each grade, strategies are consistently named; however, in some other resources, you may find the same strategy called by a different name.

When introducing a new strategy, use the chalkboard, overhead or LCD projector, to provide students with an example of a computation for which the strategy works. Are there any students in the class who already have a strategy for doing the computation in their heads? If so, encourage them to explain the strategy to the class with your help. If not, you could share the strategy yourself.

Explaining the strategy should include anything that will help students see its pattern, logic, and simplicity. That might be concrete materials, diagrams, charts, or other visuals.

In the initial activities involving a strategy, you should expect to have students do the computation the way you modeled it. Later, however, you may find that some students employ their own variation of the strategy. If it is logical and efficient for them, so much the better. Your goal is to help students broaden their repertoire of thinking strategies and become more flexible thinkers; it is not to prescribe what they must use.

Your goal is to help students broaden their repertoire of thinking strategies and become more flexible thinkers; it is not to prescribe what they must use.

You may find that there are some students who have already mastered the simple addition, subtraction, multiplication and division facts with single-digit numbers. Once a student has mastered these facts, there is no need to learn new strategies for them. In other words, it is not necessary to re-teach a skill that has been learned in a different way.
On the other hand, most students can benefit from the more difficult problems even if they know how to use the written algorithm to solve them. The emphasis here is on mental computation and on understanding the place-value logic involved in the algorithms. In other cases, as in multiplication by 5 (multiply by 10 and divide by 2), the skills involved are useful for numbers of all sizes.

Practice and Reinforcement

In general, it is the frequency rather than the length of practice that fosters retention. Thus daily, brief practices of 5-10 minutes are most likely to lead to success.

In general, it is the frequency rather than the length of practice that fosters retention. Thus daily, brief practices of 5-10 minutes are most likely to lead to success. Once a strategy has been taught, it is important to reinforce it. The reinforcement or practice exercises should be varied in type, and focus as much on the discussion of how students obtained their answers as on the answers themselves.

The selection of appropriate exercises for the reinforcement of each strategy is critical. The numbers should be ones for which the strategy being practiced most aptly applies and, in addition to lists of number expressions, the practice items should often include applications in contexts such as money, measurements and data displays. Exercises should be presented with both visual and oral prompts and the oral prompts that you give should expose students to a variety of linguistic descriptions for the operations. For example, $5 + 4$ could be described as:

- the sum of 5 and 4
- 4 added to 5
- 5 add 4
- 5 plus 4
- 4 more than 5
- 5 and 4 etc.

Response Time

- **Basic Facts**

In the curriculum guide, fact mastery is described as a correct response in 3 seconds or less and is an indication that the student has committed the facts to memory. This 3-second-response goal is a guideline for teachers and does not need to be shared with students if it will cause undue anxiety. Initially, you would allow students more time than this as they learn to apply new strategies, and reduce the time as they become more proficient.

This 3-second-response goal is a guideline for teachers and does not need to be shared with students if it will cause undue anxiety.
With other mental computation strategies, you should allow 5 to 10 seconds, depending on the complexity of the mental activity required. Again, in the initial stages, you would allow more time, and gradually decrease the wait time until students attain a reasonable time frame. While doing calculations in one’s head is the principal focus of mental computation strategies, sometimes in order to keep track, students may need to record some sub-steps in the process. This is particularly true in computational estimation when the numbers may be rounded. Students may need to record the rounded numbers and then do the calculations mentally for these rounded numbers.

In mental math activities it is reasonable for the teacher to present a mental math problem to students, ask for a show of hands, and then call on individual students for a response. In other situations, it may be more effective when all students participate simultaneously and the teacher has a way of checking everyone’s answers at the same time. Individual response boards or student dry-erase boards are tools which can be used to achieve this goal.

Struggling Students and Differentiated Instruction

It is imperative that teachers identify the best way to maximize the participation of all students in mental math activities.

It is imperative that teachers identify the best way to maximize the participation of all students in mental math activities. Undoubtedly there will be some students who experience considerable difficulty with the strategies assigned to their grade and who require special consideration. You may decide to provide these students with alternative questions to the ones you are expecting the others to do, perhaps involving smaller or more manageable numbers. Alternatively, you may just have the student complete fewer questions or provide more time.

The more senses you can involve when introducing the facts, the greater the likelihood of success for all students, but especially for students experiencing difficulty.

There may be students in the upper grades who do not have command of the basic facts. For the teacher, that may mean going back to strategies at a lower grade level to build success, and accelerating them vertically to help students catch up. For example, if the students are in grade 6 and they don’t yet know the addition facts, you can find the strategies for teaching them in the grade 2 mathematics curriculum guide in the mental math section. The students, however, are more intellectually mature, so you can immediately apply those same strategies to tens, hundreds, and thousands, and to estimation of whole numbers and decimal sums.

The more senses you can involve when introducing the facts, the greater the likelihood of success for all students, but especially for students experiencing difficulty.
Many of the thinking strategies supported by research and outlined in the curriculum advocate for a variety of learning modalities. For example:

- **Visual** (images for the addition doubles; hands on a clock for the “times-five” facts)
- **Auditory** (silly sayings and rhymes: “6 times 6 means dirty tricks; so 6 x 6 = 36”)
- **Patterns in Number** (the product of an even number multiplied by 5 ends in 0 and the tens digit is half of the number being multiplied)
- **Tacticle** (ten frames, base ten blocks)
- **Helping Facts** (8 x 9 = 72, so 7 x 9 is one less group of 9; 72 – 9 = 63)

Whatever differentiation you make, it should be to facilitate the student’s development in mental computation, and this differentiation should be documented and examined periodically to be sure it is still necessary.

Combined Grade Classrooms

What you do in these situations may vary from one strategy to another. Sometimes the students may be all doing the same strategy, sometimes with the same size or type of number, sometimes with different numbers. For example, in a combined grade 2/3 class, students might be working on the “make ten” strategy for addition. The teacher would ask the grade 2 students questions such as 9 + 6 or 5 + 8, while the grade 3 students would be given questions such as 25 + 8 or 39 + 6; the same strategy is applied, but at different levels of difficulty.

Other times, you may decide to introduce different strategies at different times on the first day, but conduct the reinforcements at the same time on subsequent days using the appropriate exercises for each grade level.

It is important to remember that there will be students in the lower grade who can master some, or all, the strategies expected for the higher grade, and some students in the higher grade who will benefit from the reinforcement of the strategies from the lower grade.

Assessment

Your assessment of mental computation should take a variety of forms. In addition to the traditional quizzes that involve students recording answers to questions that you give one-at-a-time in a certain time frame, you should also record any observations you make during the practice sessions. You should also ask students for oral responses and explanations, and have them explain strategies in writing. Individual interviews can provide you with many insights into a student’s thinking, especially in situations where paper-and-pencil responses are weak.
Timed Tests of Basic Facts

Some of the former approaches to fact learning were based on stimulus-response; that is, the belief that students would automatically give the correct answer if they heard the fact over-and-over again. No doubt, many of us learned our facts this way. These approaches often used a whole series of timed tests of 50 to 100 items to reach the goal.

...the thinking strategy approach prescribed by our curriculum is to teach students strategies that can be applied to a group of facts with mastery being defined as a correct response in 3 seconds or less.

In contrast, the thinking strategy approach prescribed by our curriculum is to teach students strategies that can be applied to a group of facts with mastery being defined as a correct response in 3 seconds or less. The traditional timed test would have limited use in assessing this goal. To be sure, if you gave your class 50 number facts to be answered in 3 minutes and some students completed all, or most, of them correctly, you would expect that these students know their facts. However, if other students only completed some of these facts and got many of those correct, you wouldn’t know how long they spent on each question and you wouldn’t have the information you need to assess the outcome. You could use these sheets in alternative ways, however.

For example:

• Ask students to quickly circle the facts which they think are “hard” for them and just complete the others. This type of self assessment can provide teachers with valuable information about each student’s level of confidence and perceived mastery.

• Ask students to circle and complete only the facts for which a specific strategy would be useful. For example, circle and complete all the “double-plus-1” facts.

• Ask them to circle all the “make ten” facts and draw a box around all “two-apart” facts. This type of activity provides students with the important practice in strategy selection and allows the teacher to assess whether or not students recognize situations for which a particular strategy works.

Parents and Guardians:
Partners in Developing Mental Math Skills

Parents and guardians are valuable partners in reinforcing the strategies you are developing in school. You should help parents understand the importance of these strategies in the overall development of their children’s mathematical thinking, and encourage them to have their children do mental computation in natural situations at home and out in the community. Through various forms of communication, you should keep parents abreast of the strategies you are teaching and the types of mental computations they should expect their children to be able to do.
MENTAL MATH

Fact Learning
Fact Learning – Addition, Subtraction, Multiplication and Division

- **Reviewing Facts and Fact Learning Strategies**
 By grade 6, it is expected that most students will have mastered their addition, subtraction, multiplication and division facts. Nevertheless, there may still be some students who do not have command of these important number facts. For the teacher, that will mean going back to strategies at a lower grade level to build success, and accelerating them vertically to help students catch up. For example, if students don’t yet know the addition facts, you can find the strategies for teaching them in the grade 2 mental math book and grade 2 Mathematics Curriculum Guide. The students, however, are more intellectually mature, so you can immediately apply those same strategies to tens, hundreds, and thousands, and to estimation of whole numbers and decimal tenths, hundredths and thousandths. The fact learning strategies introduced in previous grades are listed below.

 A thinking strategy is a way of thinking that helps complete a fact quickly. For a strategy to be a thinking strategy, it must be done mentally and it must be efficient. Students who have mastered the number facts no longer rely on thinking strategies to recall them.

Addition (grades 1-3)
- Doubles Facts
- Plus One Facts
- Plus Two Facts (2-more-than facts)
- Plus Three Facts
- Near Doubles (1-apart facts)
- Plus Zero Facts (no-change)
- Doubles Plus 2 Facts / Double In-Between / 2-Aparts
- Make 10 Facts
- Make 10 Extended (with a 7)

Subtraction (grades 1-3)
- Think Addition (for all subtraction facts)
- Up Through 10
- Back Down Through 10

Multiplication and Division (grades 3-6)
The concept of multiplication and its relationship to division is introduced in grade 3 for facts to products of 36 with single digit factors. It is not intended that students automatically recall the basic multiplication facts in grade 3, though many students will have mastered some by the end of the year. In grade 4, students are expected to develop their understanding of fact strategies for facts to 9 x 9. Teachers must help students become familiar with flexible ways to think about and work with numbers so that products (or quotients) can be determined. Thinking strategies should be introduced, practiced, and reinforced on a regular basis in the classroom throughout the school year. As students work with these strategies throughout grades 4 and 5, the goal is for automaticity by the end of grade 5. Automaticity / recall of basic facts is the ability to answer within three seconds.

For students still mastering their basic facts, following are the thinking strategies used for multiplication facts to 9 x 9 and their related division facts. An understanding of the commutative or “turnaround” property in multiplication greatly reduces the number of facts to be mastered.
- **x2 Facts** (with turnarounds): 2x2, 2x3, 2x4, 2x5, 2x6, 2x7, 2x8, 2x9
 These are directly related to the addition doubles and teachers need to make this connection clear. For example, 3 + 3 is double 3 (6); 3 x 2 and 2 x 3 are also double 3

- **Nifty Nines** (with turnarounds): 6x9, 7x9, 8x9, 9x9
 There are two patterns in the nine-times table that students should discover:
 1. When you multiply a number by 9, the digit in the tens place in the product is one less than the number being multiplied. For example in 6 x 9, the digit in the tens place of the product will be 5.
 2. The two digits in the product must add up to 9. So in this example, the number that goes with 5 to make nine is 4. The answer, then, is 54. Some students might also figure out their 9-times facts by multiplying first by 10, and then subtracting. For example, for 7 x 9 or 9 x 7, you could think “7 tens is 70, so 7 nines is 70 -7, or 63.

- **Fives Facts** (with turnarounds): 5x3, 5x4, 5x5, 5x6, 5x7
 It is easy to make the connection to the multiplication facts involving 5s using an analog clock. For example, if the minute hand is on the 6 and students know that means 30 minutes after the hour, then the connection to 6 x 5 = 30 can be made. This is why you may see the Five Facts referred to as the “clock facts.” This would be the best strategy for students who know how to tell time on an analog clock, a specific outcome from the grade 4 curriculum.

 You should also introduce the two patterns that result when numbers are multiplied by 5:
 1. For even numbers multiplied by 5, the answer always ends in zero, and the digit in the tens place is half the other number. So, for 8 x 5 = 40
 2. For odd numbers multiplied by 5, the product always ends in 5, and the digit in the tens place is half of the number that comes before the other number. So 5 x 9 = 45

- **Ones Facts** (with turnarounds): 1x1, 1x2, 1x3, 1x4, 1x5, 1x6, 1x7, 1x8, 1x9
 While the ones facts are the “no change” facts, it is important that students understand why there is no change. Many students get these facts confused with the addition facts involving 1. For example 6 x 1 means six groups of 1 or 1 + 1 + 1 + 1 + 1 + 1 and 1 x 6 means one group of 6. It is important to avoid teaching arbitrary rules such as “any number multiplied by one is that number”. Students will develop understanding of this rule on their own given opportunities to develop their thinking.

 The more senses you can involve when introducing the facts, the greater the likelihood of success, especially for students experiencing difficulty. Many of the thinking strategies supported by research and outlined in the curriculum advocate for a variety of learning modalities.

- **The Tricky Zeros Facts**
 As with the ones facts, students need to understand why these facts all result in zero because they are easily confused with the addition facts involving zero. Teachers must help students understand the meaning of the number sentence.

 For example: 6 x 0 means “six 0’s or “six sets of nothing.” This could be shown by drawing six boxes with nothing in each box. 0 x 6 means “zero sets of 6.” Ask students to use counters or blocks to build two sets of 6, then 1 set of 6 and finally zero sets of 6 where they don’t use any counters or blocks. They will quickly realize why zero is the product. Similar to the previous strategy for teaching the ones facts, it is important not to teach a rule such as “any number multiplied by zero is zero”. Students will come to this rule on their own, given opportunities to develop understanding.
➢ **Threes Facts** (with turnarounds): 3x3, 3x4, 3x6, 3x7, 3x8, 3x9
 The strategy here, is for students to think “times 2, plus another group”. So for 7 x 3 or 3 x 7, the student should think “7 times 2 is 14, plus 7 more is 21.”

➢ **Fours Facts** (with turnarounds): 4x4, 4x6, 4x7, 4x8, 4x9
 One strategy that works for any number multiplied by 4 is “double-double”. For example, for 6 x 4, you would double the 6 (12) and then double again (24). Another strategy that works any time one (or both) of the factors is even, is to divide the even number in half, then multiply, and then double your answer. So, for 7 x 4, you could multiply 7 x 2 (14) and then double that to get 28. For 16 x 9, think 8 x 9 (72) and 72 + 72 = 70 + 70 (140) plus 4 = 144.

 One of the values of patterns in mathematics is that they help us do seemingly difficult things quite easily. The Fives Facts pattern illustrates clearly one of the values of pattern and regularity in mathematics.

➢ **The Last Six Facts**
 After students have worked on the above seven strategies for learning the multiplication facts, there are only six facts left to be learned and their turnarounds: 6 x 6; 6 x 7; 6 x 8; 7 x 7; 7 x 8 and 8 x 8. At this point, the students themselves can probably suggest strategies that will help with quick recall of these facts. You should put each fact before them and ask for their suggestions.

 After students have mastered each cluster of multiplication facts, it is appropriate to have them learn the corresponding division facts. One strategy for learning the division facts is “think multiplication”.
Multiplication Facts to 9 x 9
(Clustered by Thinking Strategy)

<table>
<thead>
<tr>
<th>Facts With 2</th>
<th>Facts with 9</th>
<th>Square Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Addition Doubles)</td>
<td>(Patterns)</td>
<td>(These facts, and others like them, form square arrays.)</td>
</tr>
<tr>
<td>2 x 1 1 x 2</td>
<td>9 x 1 1 x 9</td>
<td>1 x 1</td>
</tr>
<tr>
<td>2 x 2</td>
<td>9 x 2 2 x 9</td>
<td>2 x 2</td>
</tr>
<tr>
<td>2 x 3 3 x 2</td>
<td>9 x 3 3 x 9</td>
<td>3 x 3</td>
</tr>
<tr>
<td>2 x 4 4 x 2</td>
<td>9 x 4 4 x 9</td>
<td>4 x 4</td>
</tr>
<tr>
<td>2 x 5 5 x 2</td>
<td>9 x 5 5 x 9</td>
<td>5 x 5</td>
</tr>
<tr>
<td>2 x 6 6 x 2</td>
<td>9 x 6 6 x 9</td>
<td>6 x 6</td>
</tr>
<tr>
<td>2 x 7 7 x 2</td>
<td>9 x 7 7 x 9</td>
<td>7 x 7</td>
</tr>
<tr>
<td>2 x 8 8 x 2</td>
<td>9 x 8 8 x 9</td>
<td>8 x 8</td>
</tr>
<tr>
<td>2 x 9 9 x 2</td>
<td>9 x 9</td>
<td>9 x 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facts With 10</th>
<th>Facts With 1</th>
<th>Facts With 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Not officially a “basic fact”, but included here since our number system is base-ten. Students can think about the pattern here.)</td>
<td>(No-Change Facts)</td>
<td>(Double-Double)</td>
</tr>
<tr>
<td>10 x 1 1 x 10</td>
<td>1 x 1</td>
<td>4 x 1 1 x 4</td>
</tr>
<tr>
<td>10 x 2 2 x 10</td>
<td>1 x 2 2 x 1</td>
<td>4 x 2 2 x 4</td>
</tr>
<tr>
<td>10 x 3 3 x 10</td>
<td>1 x 3 3 x 1</td>
<td>4 x 3 3 x 4</td>
</tr>
<tr>
<td>10 x 4 4 x 10</td>
<td>1 x 4 4 x 1</td>
<td>4 x 4</td>
</tr>
<tr>
<td>10 x 5 5 x 10</td>
<td>1 x 5 5 x 1</td>
<td>4 x 5 5 x 4</td>
</tr>
<tr>
<td>10 x 6 6 x 10</td>
<td>1 x 6 6 x 1</td>
<td>4 x 6 6 x 4</td>
</tr>
<tr>
<td>10 x 7 7 x 10</td>
<td>1 x 7 7 x 1</td>
<td>4 x 7 7 x 4</td>
</tr>
<tr>
<td>10 x 8 8 x 10</td>
<td>1 x 8 8 x 1</td>
<td>4 x 8 8 x 4</td>
</tr>
<tr>
<td>10 x 9 9 x 10</td>
<td>1 x 9 9 x 1</td>
<td>4 x 9 9 x 4</td>
</tr>
<tr>
<td>10 x 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facts With 5</th>
<th>Facts With 0</th>
<th>Facts With 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Clock Facts)</td>
<td>(Facts with 0 have products of 0)</td>
<td>(Double + 1 more set)</td>
</tr>
<tr>
<td>5 x 1 1 x 5</td>
<td>0 x 0</td>
<td>3 x 6 6 x 3</td>
</tr>
<tr>
<td>5 x 2 2 x 5</td>
<td>0 x 1 1 x 0</td>
<td>3 x 7 7 x 3</td>
</tr>
<tr>
<td>5 x 3 3 x 5</td>
<td>0 x 2 2 x 0</td>
<td>3 x 8 8 x 3</td>
</tr>
<tr>
<td>5 x 4 4 x 5</td>
<td>0 x 3 3 x 0</td>
<td>3 x 9 9 x 3</td>
</tr>
<tr>
<td>5 x 5</td>
<td>0 x 4 4 x 0</td>
<td></td>
</tr>
<tr>
<td>5 x 6 6 x 5</td>
<td>0 x 5 5 x 0</td>
<td>Last 6 Facts</td>
</tr>
<tr>
<td>5 x 7 7 x 5</td>
<td>0 x 6 6 x 0</td>
<td>6 x 7 7 x 6</td>
</tr>
<tr>
<td>5 x 8 8 x 5</td>
<td>0 x 7 7 x 0</td>
<td>6 x 8 8 x 6</td>
</tr>
<tr>
<td>5 x 9 9 x 5</td>
<td>0 x 8 8 x 0</td>
<td>7 x 8 8 x 7</td>
</tr>
<tr>
<td>0 x 9 9 x 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Related Division Facts
(Clustered by Thinking Strategy)

<table>
<thead>
<tr>
<th>Facts With 2</th>
<th>Facts with 9</th>
<th>Square Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Addition Doubles)</td>
<td>(Patterns)</td>
<td>(These facts, and others like them, form square arrays.)</td>
</tr>
<tr>
<td>$2 \div 1$ $2 \div 2$</td>
<td>$9 \div 1$ $9 \div 9$</td>
<td>$9 + 3$</td>
</tr>
<tr>
<td>$4 \div 2$</td>
<td>$18 \div 2$ $18 \div 9$</td>
<td>$16 \div 4$</td>
</tr>
<tr>
<td>$6 \div 3$ $6 \div 2$</td>
<td>$27 \div 3$ $27 \div 9$</td>
<td>$36 \div 6$</td>
</tr>
<tr>
<td>$8 \div 4$ $8 \div 2$</td>
<td>$36 \div 4$ $36 \div 9$</td>
<td>$49 \div 7$</td>
</tr>
<tr>
<td>$10 \div 5$ $10 \div 2$</td>
<td>$45 \div 5$ $45 \div 9$</td>
<td>$64 \div 8$</td>
</tr>
<tr>
<td>$12 \div 6$ $12 \div 2$</td>
<td>$54 \div 6$ $54 \div 9$</td>
<td></td>
</tr>
<tr>
<td>$14 \div 7$ $14 \div 2$</td>
<td>$63 \div 7$ $63 \div 9$</td>
<td></td>
</tr>
<tr>
<td>$16 \div 8$ $16 \div 2$</td>
<td>$72 \div 8$ $72 \div 9$</td>
<td></td>
</tr>
<tr>
<td>$18 \div 9$ $18 \div 2$</td>
<td>$81 \div 9$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facts With 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Not officially a “basic fact”, but included here since our number system is base-ten. Students can think about the pattern here.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facts With 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10 \div 10$ $10 \div 1$</td>
</tr>
<tr>
<td>$20 \div 10$ $20 \div 2$</td>
</tr>
<tr>
<td>$30 \div 10$ $30 \div 3$</td>
</tr>
<tr>
<td>$40 \div 10$ $40 \div 4$</td>
</tr>
<tr>
<td>$50 \div 10$ $50 \div 5$</td>
</tr>
<tr>
<td>$60 \div 10$ $60 \div 6$</td>
</tr>
<tr>
<td>$70 \div 10$ $70 \div 7$</td>
</tr>
<tr>
<td>$80 \div 10$ $80 \div 8$</td>
</tr>
<tr>
<td>$90 \div 10$ $90 \div 9$</td>
</tr>
<tr>
<td>$100 \div 10$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facts With 5</th>
<th>Facts with 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Clock Facts)</td>
<td>(Facts with zero have products of zero)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facts With 5</th>
<th>Facts with 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5 \div 1$ $5 \div 5$</td>
<td>$0 \div 0$</td>
</tr>
<tr>
<td>$10 \div 2$ $10 \div 5$</td>
<td>$0 \div 1$ $1 \div 0$</td>
</tr>
<tr>
<td>$15 \div 3$ $15 \div 5$</td>
<td>$0 \div 2$ $2 \div 0$</td>
</tr>
<tr>
<td>$20 \div 4$ $20 \div 5$</td>
<td>$0 \div 3$ $3 \div 0$</td>
</tr>
<tr>
<td>$25 \div 5$</td>
<td>$0 \div 4$ $4 \div 0$</td>
</tr>
<tr>
<td>$30 \div 6$ $30 \div 5$</td>
<td>$0 \div 5$ $5 \div 0$</td>
</tr>
<tr>
<td>$35 \div 7$ $35 \div 5$</td>
<td>$0 \div 6$ $6 \div 0$</td>
</tr>
<tr>
<td>$40 \div 8$ $40 \div 5$</td>
<td>$0 \div 7$ $7 \div 0$</td>
</tr>
<tr>
<td>$45 \div 9$ $45 \div 5$</td>
<td>$0 \div 8$ $8 \div 0$</td>
</tr>
<tr>
<td>$49 \div 9$ $49 \div 0$</td>
<td>$0 \div 9$ $9 \div 0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facts with 4</th>
<th>Times-3 Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Double-Double)</td>
<td>(Double-plus 1 more set)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facts with 4</th>
<th>Times-3 Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8 \div 2$ $8 \div 4$</td>
<td>$18 \div 6$ $18 \div 3$</td>
</tr>
<tr>
<td>$12 \div 3$ $12 \div 4$</td>
<td>$21 \div 7$ $21 \div 3$</td>
</tr>
<tr>
<td>$16 \div 4$</td>
<td>$24 \div 8$ $24 \div 3$</td>
</tr>
<tr>
<td>$20 \div 5$ $20 \div 4$</td>
<td></td>
</tr>
<tr>
<td>$24 \div 6$ $24 \div 4$</td>
<td></td>
</tr>
<tr>
<td>$28 \div 7$ $28 \div 4$</td>
<td></td>
</tr>
<tr>
<td>$32 \div 8$ $32 \div 4$</td>
<td></td>
</tr>
<tr>
<td>$36 \div 9$ $36 \div 4$</td>
<td></td>
</tr>
</tbody>
</table>

| Last 6 Facts |

<table>
<thead>
<tr>
<th>Last 6 Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>$42 \div 6$ $42 \div 7$</td>
</tr>
<tr>
<td>$48 \div 8$ $48 \div 6$</td>
</tr>
<tr>
<td>$56 \div 7$ $56 \div 8$</td>
</tr>
</tbody>
</table>
MENTAL MATH

Mental Computation
B. Mental Computation – Addition

Your goal for teaching mental computation is to show students a wide variety of mental methods, provide opportunities where each method can be employed, and encouraged students to use mental methods regularly to improve their skills.

- **Front End Addition** (Review)
 This strategy involves adding the highest place values and then adding the sums of the next place value(s). In Grade 4, the Front-End Addition strategy included numbers in the thousands and in grade 5 tenths and hundredths were added. Students in grade 6 will benefit from a review of this addition strategy.

 Examples
 a) For 37 + 26, think: “30 and 20 is 50 and 7 and 6 is 13; 50 plus 13 is 63.”
 b) For 450 + 380, think, “400 and 300 is 700, 50 and 80 is 130; 700 plus 130 is 830.”
 c) For 3300 + 2800, think, “3000 and 2000 is 5000, 300 and 800 is 1100; 500 plus 1100 is 6100.”
 d) For 1.4 + 2.5, think, “One plus two is 3, and 4 tenths plus 5 tenths is 9 tenths, so the answer is 3 and 9 tenths. 3.9

 Practice Items

 45 + 38 = 34 + 18 = 53 + 29 =
 15 + 66 = 74 + 19 = 190 + 430 =
 340 + 220 = 470 + 360 = 607 + 304 =
 3500 + 2300 = 5400 + 3400 = 6800 + 2100 =
 8800 + 1100 = 2700 + 7200 = 6300 + 4400 =
 4.6 + 3.2 = 5.4 + 3.7 = 1.85 + 2.25 =
 3.3 + 2.4 = 6.6 + 2.5 = 0.36 + 0.43 =
 1.5 + 1.5 = 0.75 + 0.05 = 0.45 + 0.44 =

 Add your own practice items

 - **Break Up and Bridge** (Review)
 This strategy is similar to front-end addition except that you begin with all of the first number and then add on parts of the second number beginning with the largest place value. Students will use the front-end strategy that makes the most sense to them and is easiest to use.

 Examples
 a) For 45 + 36, think, “45 and 30 (from the 36) is 75, and 75 plus 6 (the rest of the 36) is 81.”
 b) For 537 + 208, think, “537 and 200 is 737, and 737 plus 8 is 745.”
 c) For 5300 plus 2400, think, “5300 and 2000 (from the 2400) is 7300 and 7300 plus 400 (from the rest of 2400) is 7700.”
 d) For 3.6 plus 5.3, think, “3.6 and 5 (from the 5.3) is 8.6 and 8.6 plus 0.3 (the rest of 5.3) is 8.9.”
Practice Items

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>37 + 42 =</td>
<td>72 + 21 =</td>
<td>88 + 16 =</td>
</tr>
<tr>
<td>74 + 42 =</td>
<td>325 + 220 =</td>
<td>301 + 435 =</td>
</tr>
<tr>
<td>747 + 150 =</td>
<td>142 + 202 =</td>
<td>370 + 327 =</td>
</tr>
<tr>
<td>7700 + 1200 =</td>
<td>4100 + 3600 =</td>
<td>5700 + 2200 =</td>
</tr>
<tr>
<td>7300 + 1400 =</td>
<td>2800 + 6100 =</td>
<td>3300 + 3400 =</td>
</tr>
<tr>
<td>4.2 + 3.5 =</td>
<td>6.3 + 1.6 =</td>
<td>4.2 + 3.7 =</td>
</tr>
<tr>
<td>6.1 + 2.8 =</td>
<td>0.32 + 0.56 =</td>
<td>2.08 + 3.2 =</td>
</tr>
<tr>
<td>4.15 + 3.22 =</td>
<td>5.43 + 2.26 =</td>
<td>6.03 + 2.45 =</td>
</tr>
<tr>
<td>15.45 + 1.25 =</td>
<td>43.30 + 7.49 =</td>
<td>70.32 + 9.12 =</td>
</tr>
</tbody>
</table>

Practice Items

37 + 42 = 72 + 21 = 88 + 16 =
74 + 42 = 325 + 220 = 301 + 435 =
747 + 150 = 142 + 202 = 370 + 327 =
7700 + 1200 = 4100 + 3600 = 5700 + 2200 =
7300 + 1400 = 2800 + 6100 = 3300 + 3400 =
4.2 + 3.5 = 6.3 + 1.6 = 4.2 + 3.7 =
6.1 + 2.8 = 0.32 + 0.56 = 2.08 + 3.2 =
4.15 + 3.22 = 5.43 + 2.26 = 6.03 + 2.45 =
15.45 + 1.25 = 43.30 + 7.49 = 70.32 + 9.12 =

Add your own practice items

In the initial activities involving a strategy, you should expect to have students do the computation the way you modeled it. Later, however, you may find that some students employ their own variation of the strategy. If it is logical and efficient for them, so much the better.

Finding Compatibles (Review)

This strategy for addition involves looking for pairs of numbers that combine to make a sum that will be easy to work with. Some examples of common compatible numbers include 1 and 9; 40 and 60; 75 and 25 and 300 and 700.

Examples

a) For $3 + 8 + 7 + 6 + 2$, think, "3 + 7 is 10, 8 + 2 is 10, so 10 + 10 + 6 is 26."

b) For $25 + 47 + 75$, think, "25 and 75 is 100, so 100 and 47 is 147."

c) For $400 + 720 + 600$, think, "400 and 600 is 1000, so the sum is 1720."

d) For $3000 + 7000 + 2400$, think, "3000 and 7000 is 10 000, so 10 000 and 2400 is 12 400."

Practice Items

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11 + 59 =</td>
<td>60 + 30 + 40 =</td>
<td></td>
</tr>
<tr>
<td>75 + 95 + 25 =</td>
<td>475 + 25 =</td>
<td></td>
</tr>
<tr>
<td>625 + 75 =</td>
<td>300 + 437 + 700 =</td>
<td></td>
</tr>
<tr>
<td>800 + 740 + 200 =</td>
<td>900 + 100 + 485 =</td>
<td></td>
</tr>
<tr>
<td>400 + 1600 + 3000 =</td>
<td>9000 + 3300 + 1000 =</td>
<td></td>
</tr>
<tr>
<td>3250 + 3000 + 1750 =</td>
<td>2200 + 2800 + 600 =</td>
<td></td>
</tr>
<tr>
<td>3000 + 300 + 700 + 2000 =</td>
<td>3400 + 5600 =</td>
<td></td>
</tr>
<tr>
<td>0.6 + 0.9 + 0.4 + 0.1 =</td>
<td>0.2 + 0.4 + 0.8 +=</td>
<td></td>
</tr>
<tr>
<td>0.7 + 0.1 + 0.9 + 0.3 =</td>
<td>0.25 + 0.50 + 0.75 =</td>
<td></td>
</tr>
<tr>
<td>0.4 + 0.5 + 0.6 + 0.2 + 0.5 =</td>
<td>0.45 + 0.63 =</td>
<td></td>
</tr>
<tr>
<td>0.80 + 0.26 =</td>
<td>0.30 + 0.33 + 0.70 =</td>
<td></td>
</tr>
</tbody>
</table>

Add your own practice items

In the development of mental computation skills, the exercises should be presented with both visual and oral prompts. This means individual practice items should be written on the whiteboard, overhead, dry-erase board or strips of paper so that students can see numbers as well as hear them.
• **Compensation** (Review)
This strategy involves changing one number in a sum to a nearby ten, hundred, thousand, or decimal tenth or hundredth, carrying out the addition using that changed number, and then adjusting the answer to compensate for the original change. Students should understand that the reason a number is changed is to make it more compatible and easier to work with. They must also remember to adjust their answer to account for the change that was made.

Examples
a) For 52 + 39, think, “52 plus 40 is 92, but I added 1 too many to take me to the next 10, so I subtract one from my answer to get 91.”
b) For 345 + 198, think, “345 + 200 is 545, but I added 2 too many; so I subtract 2 from 545 to get 543.”
c) For 4500 plus 1900, think, “4500 + 2000 is 6500 but I added 100 too many; so, I subtract 100 from 6500 to get 6400.”
d) For 0.54 plus 0.29, think, “0.54 + 0.3 is 0.84 but I added 0.01 too many; so, I subtract 0.01 from 0.84 to compensate, to get 0.83.”

Practice Items

```
56 + 8 =       72 + 9 =       44 + 27 =
14 + 58 =      21 + 48 =      255 + 49 =
371 + 18 =     125 + 49 =     504 + 199 =
304 + 399 =    526 + 799 =    676 + 197 =
1300 + 800 =   5400 + 2900 = 6421 + 1900 =
3450 + 4800 =  2330 + 5900 = 15200 + 2900 =
4621 + 3800 =  2111 + 4900 = 2050 + 6800 =
0.71 + 0.09 =  0.56 + 0.08 =  0.32 + 0.19 =
4.52 + 0.98 =  1.17 + 0.39 =  25.34 + 0.58 =
```

Add your own practice items

The reinforcement activities for each strategy should be varied in type and include frequent discussions. Progress should be monitored and assessed in a variety of ways to help determine how long students should spend on a particular strategy.

• **Make 10s, 100s, or 1000s** (Review)
Make 10 is a thinking strategy introduced in grade 2 for addition facts which have an 8 or a 9 as one of the addends. It involves taking part of the other number and adding it to the 8 or 9 to make a 10 and then adding on the rest. For example, for 8 + 6, you take 2 from the 6 and give it to the 8 to make 10 + 4. Students should understand that the purpose of this strategy is to get a 10 which is easy to add.

Examples
a) For 58 + 6, think, “58 plus 2 (from the 6) is 60, and 60 plus 4 (the other part of 6) is 64.”
b) For 350 + 59, think, “350 plus 50 is 400, and 400 plus 9 is 409.”
c) For 7400 + 790, think, “7400 plus 600 is 8000, and 8000 plus 190 is 8190.”
C. Mental Computation – Subtraction

It is reasonable to expect most students to mentally keep track of no more than two combinations, especially if there is trading involved.

- Back Down Through 10/100/1000 (Review)

This strategy extends one of the strategies students learned in Grade 3 for fact learning. It involves subtracting a part of the subtrahend to get to the nearest ten or hundred, or thousand and then subtracting the rest of the subtrahend. It was introduced in grade 3 for fact learning, extended to numbers in the 10’s and 100’s in grade 4, and to numbers in the 1000’s in grade 5.

Examples
a) For 15 – 8, think, “15 subtract 5 (one part of the 8) is 10, and 10 subtract 3 (the other part of the 8) is 7.”
b) For 74 – 6, think, “74 subtract 4 (one part of the 6) is 70 and 70 subtract 2 (the other part of the 6) is 68.”
c) For 530 – 70, think, “530 subtract 30 (one part of the 70) is 500 and 500 subtract 40 (the other part of the 70) is 460.”
d) For 8600 – 700, think, “8600 subtract 600 (one part of the 700) is 8000 and 8000 subtract 100 (the rest of the 700) is 7900.”

Practice Items
74 – 7 = 97 – 8 = 53 – 5 =
420 – 60 = 340 -70 = 630 – 60 =
540 – 70 = 760 – 70 = 320 – 50 =
9200 – 500 = 4700 - 800 = 6100 – 300 =
7500 – 700 = 800 – 600 = 4200 – 800 =
9500 – 600 = 3400 – 700 = 2300 – 600 =

Add your own practice items

- Up Through 10/100/1000 (Review)

This strategy is an extension of the “Up through 10” strategy that students learned in Grade 3 to help master the subtraction facts. It can also be thought of as, “counting on to subtract”.

To apply this strategy, you start with the smaller number (the subtrahend) and keep track of the distance to the next 10, 100, 1000 and then add this amount to the rest of the distance to the greater number (the minuend).

Examples
a) For 613 – 594, think, “It’s 6 from 594 to 600 and then 13 more to get to 613; that’s 19 altogether.”
b) For 84 – 77, think, “It’s 3 from 77 to 80 and 4 more to 84; so that’s 7 altogether.”
c) For 2310 – 1800, think, “It’s 200 from 1800 to 2000 then 310 more, so that’s 510 in all.”
d) For 12.4 – 11.8, think: “It’s 2 tenths to get to 12 from 11.8 and then 4 more tenths, so that’s 6 tenths, or 0.6 altogether.”
e) For 6.12 – 5.99, think, “It’s one hundredth from 5.99 to 6.00 and then twelve more hundredths to get to 6.12; So the difference is 1 hundredth plus 12 hundredths, or 0.13.”

Practice Items

11 - 7 = 17 – 8 = 13 – 6 =
12 – 8 = 15 – 6 = 16 – 7 =
95 - 86 = 67 - 59 = 46 – 38 =
715 – 698 = 612 – 596 = 817 – 798 =
411 – 398 = 916 – 897 = 513 – 498 =
727 – 698 = 846 – 799 = 631 – 597 =
5170 – 4800 = 3210 – 2900 = 8220 – 7800 =
9130 – 8950 = 2400 – 1800 = 4195 – 3900 =
7050 – 6750 = 1280 – 900 = 8330 – 7700 =
15.3 – 14.9 = 27.2 – 26.8 = 19.1 – 18.8 =
45.6 – 44.9 = 23.5 – 22.8 = 50.1 – 49.8 =
34.4 – 33.9 = 52.8 – 51.8 = 70.3 – 69.7 =
3.25 – 2.99 = 5.12 – 4.99 = 4.05 – 3.98 =

• Compensation (Review)
This strategy for subtraction involves changing the subtrahend (the amount being subtracted) to the nearest 10 or 100, carrying out the subtraction, and then adjusting the answer to compensate for the original change.

Examples
a) For 17 – 9, think, “I can change 9 to 10 and then subtract 17 – 10; that gives me 7, but I only need to subtract 9, so I’ll add 1 back on. My answer is 8.”
b) For 56 – 18, think, “I can change 18 to 20 and then subtract 56 – 20; that gives me 36, but I only need to subtract 18, so I’ll add 2 back on. My answer is 38.”
c) For 756 – 198, think: “756 – 200 = 556, and 556 + 2 = 558”
d) For 5760 - 997, think: 5760- 1000 is 4760; but I subtracted 3 too many; so, I add 3 to 4760 to compensate to get 4763.
e) For 3660 - 996, think: 3660 -1000 + 4 = 2664.

Practice Items

15 – 8 = 17 – 9 = 23 – 8 =
74 - 9 = 84 – 7 = 92 – 8 =
65 – 9 = 87 – 9 = 73 – 7 =
673 – 99 = 854 – 399 = 953 - 499 =
775 – 198 = 534 – 398 = 647 – 198 =
641 – 197 = 802 – 397 = 444 – 97 =
765 – 99 = 721 – 497 = 513 – 298 =
8620 – 998 = 4100 – 994 = 5700 – 397 =
9850 – 498 = 3720 – 996 = 2900 – 595 =
4222 – 998 = 7310 – 194 = 75316 – 9900

Add your own practice items
Adding or subtracting the same amount from both numbers maintains the distance between them and makes the mental subtraction easier. Examining pairs of numbers on a number line such as a metre stick can help students understand the logic of this strategy.

- **Balancing For A Constant Difference** (Review)
 This strategy for subtraction involves adding or subtracting the same amount from both the subtrahend and the minuend to get a ten, hundred or thousand in order to make the subtraction easier. This strategy needs to be carefully introduced to convince students that it works because the two numbers are the same distance apart as the original numbers.

 Examining pairs of numbers on a number line such as a metre stick can help students understand the logic of the strategy. For example, the difference or distance between the numbers 66 and 34 (66 - 34) on a number line is the same as the difference between 70 and 38, and it’s easier to mentally subtract the second pair of numbers.

 Because both numbers change, many students may need to record at least the first changed number to keep track.

 Examples
 1) For 87 -19, think, “Add 1 to both numbers to get 88 – 20, so 68 is the answer.”
 For 76 – 32, think, “Subtract 2 from both numbers to get 74 -30, so the answer is 44.”
 2) For 345 – 198, think, “Add 2 to both numbers to get 347 – 200; the answer is 147.”
 For 567 – 203, think, “Subtract 3 from both numbers to get 564 -200; so the answer is 364.”
 3) For 8.5 – 1.8, think, “Add 2 tenths to both numbers to get 8.5 – 2.0; That’s 6.7.”
 For 5.4 - 2.1, think, “Subtract 1 tenth from both numbers to get 5.3 – 2.0 or 3.3.”
 4) For 6.45 – 1.98, think, “Add 2 hundredths to both numbers to get 6.47 – 2.00, so 4.47 is the answer.”
 For 5.67 – 2.03, think, “Subtract 3 hundredths from both numbers to get 5.64 – 2.00. The answer is 3.64.”

 Practice Items
 85 – 18 = 42 - 17 = 36 – 19 =
 78 – 19 = 67 -18 = 75 – 38 =
 649 - 299 = 563 – 397 = 823 – 298 =
 912 – 797 = 737 - 398 = 456 – 198=
 948 – 301 = 437 – 103 = 819 – 504 =
 6.4 – 3.9 = 7.6 – 4.2 = 8.7 – 5.8 =
 4.3 – 1.2 = 9.1 – 6.7 = 5.0 – 3.8 =
 6.3 – 2.2 = 4.7 – 1.9 = 12.5 – 4.3 =
 15.3 – 5.7 = 8.36 – 2.99 = 7.45 – 1.98 =

 Add your own practice items

 • **Break Up and Bridge** (Review)
 With this subtraction strategy, you start with the larger number (the minuend) and subtract the highest place value of the second number first (the subtrahend), and then the rest of the subtrahend.

 Examples
 a) For 92 – 26, think, “92 subtract 20 (from the 26) is 72 and 72 subtract 6 is 66.”
 b) For 745 – 203, think, “745 subtract 200 (from the 203) is 545 and 545 minus 3 is 542.”
 c) For 8369 - 204, think, “8369 subtract 200 is 8169 and minus 4 (the rest of the 204) is 8165.”
D. Mental Computation – Multiplication and Division

- Multiplying and Dividing by 10, 100 and 1000 Using a Place-Value-Change Strategy (Review)

This strategy is first introduced in grade 4 for multiplication, and grade 5 for division. Students learn that all the place values of the number being multiplied increase one place when multiplying by 10, two places when multiplying by 100, and 3 places when multiplying by 1000. When dividing by these same numbers, all the place values of the dividend decrease in a similar manner.

Examples
a) For 24 x 10, the 2 tens increases one place to 2 hundreds and the 4 ones increases one place to 4 tens; 240.
b) For 36 x 100, the 3 tens increases two places to 3 thousands and the 6 ones increases two places to 6 hundreds; 3600.
c) For 37 x 1000, the 3 tens will increase to 3 ten-thousands or 30 000, and the 7 tens will increase to 7 thousands. 30 000 plus 7000 is 37 000.
d) For, 500 ÷ 10, think: “The 5 hundreds will decrease to 5 tens; therefore, the answer is 50.”
e) For, 7500 ÷ 100, think, The 7 thousands will decrease to 7 tens and the 5 hundreds will decrease to 5 ones; therefore, the answer is 75.
f) For, 75 000 ÷ 1000; think, “The 7 ten thousands will decrease to 7 tens and the 5 thousands will decrease to 5 ones; therefore, the answer is 75.”

Practice Items

<table>
<thead>
<tr>
<th>Practice Items</th>
<th>92 × 10 =</th>
<th>10 × 66 =</th>
<th>40 × 10 =</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 × 7 =</td>
<td>100 × 2 =</td>
<td>100 × 15 =</td>
<td></td>
</tr>
<tr>
<td>100 × 74 =</td>
<td>100 × 39 =</td>
<td>37 × 100 =</td>
<td></td>
</tr>
<tr>
<td>10 × 10 =</td>
<td>55 × 100 =</td>
<td>100 × 83 =</td>
<td></td>
</tr>
<tr>
<td>100 × 70 =</td>
<td>40 × 100 =</td>
<td>100 × 22 =</td>
<td></td>
</tr>
<tr>
<td>1000 × 6 =</td>
<td>1000 × 14 =</td>
<td>83 × 1000 =</td>
<td></td>
</tr>
<tr>
<td>$73 × 1000 =</td>
<td>$20 × 1000 =</td>
<td>16 × $1000 =</td>
<td></td>
</tr>
<tr>
<td>400 ÷ 100 =</td>
<td>900 ÷ 100 =</td>
<td>6000 ÷ 100 =</td>
<td></td>
</tr>
<tr>
<td>4200 ÷ 100 =</td>
<td>7600 ÷ 100 =</td>
<td>8500 ÷ 100 =</td>
<td></td>
</tr>
<tr>
<td>9700 ÷ 100 =</td>
<td>4400 ÷ 100 =</td>
<td>10 000 ÷ 100 =</td>
<td></td>
</tr>
<tr>
<td>600 pennies = $____</td>
<td>1800 pennies =$____</td>
<td>5600 pennies =$____</td>
<td></td>
</tr>
<tr>
<td>82 000 ÷ 1000 =</td>
<td>98 000 ÷ 1000 =</td>
<td>12 000 ÷ 1000 =</td>
<td></td>
</tr>
</tbody>
</table>

Add your own practice items

Using the “place-value-change strategy” will be more meaningful than the “attach-zeros strategy” when students are working with decimals and will more likely produce correct answers.
• **Multiplying 0.1, 0.01, and 0.001 Using a Place-Value-Change Strategy** *(Review)*

All the place values of the number being multiplied decrease one place when multiplying by 0.1, two places when multiplying by 0.01 and three places when multiplying by 0.001.

The place-value-change strategy was extended to multiplication by 0.1, 0.01, and 0.001 in grade 5. By exploring the patterns that result when numbers are multiplied by these fractional amounts, students discovered that all the place values of the number being multiplied decrease one place when multiplying by 0.1, two places when multiplying by 0.01 and three places when multiplying by 0.001.

Examples

a) For 5×0.1, think, “The 5 ones will decrease one place to 5 tenths, therefore the answer is 0.5.”

b) For, 0.4×0.1, think, “The 4 tenths will decrease one place to 4 hundredths, therefore the answer is 0.04.”

c) For 5×0.01, think, “The 5 ones will decrease two places to 5 hundredths, so the answer is 0.05.”

d) For, 0.4×0.01, think, “The 4 tenths will decrease two places to 4 thousandths, therefore the answer is 0.004.”

e) For 5×0.001, think, “The 5 ones will decrease three places to 5 thousandths; so, the answer is 0.005.”

Practice Items

- $6 \times 0.1 = \quad 8 \times 0.1 = \quad 3 \times 0.1 =$
- $9 \times 0.1 = \quad 1 \times 0.1 = \quad 12 \times 0.1 =$
- $72 \times 0.1 = \quad 136 \times 0.1 = \quad 406 \times 0.1 =$
- $0.7 \times 0.1 = \quad 0.5 \times 0.1 = \quad 0.1 \times 10 =$
- $1.6 \times 0.1 = \quad 0.1 \times 84 = \quad 0.1 \times 3.2 =$
- $6 \times 0.01 = \quad 8 \times 0.01 = \quad 1.2 \times 0.01 =$
- $0.5 \times 0.01 = \quad 0.4 \times 0.01 = \quad 0.7 \times 0.01 =$
- $2.3 \times 0.01 = \quad 3.9 \times 0.01 = \quad 10 \times 0.01 =$
- $100 \times 0.01 = \quad 330 \times 0.01 = \quad 46 \times 0.01 =$
- $3 \times 0.001 = \quad 7 \times 0.001 = \quad 80 \times 0.001 =$
- $21 \times 0.001 = \quad 45 \times 0.001 = \quad 12 \times 0.001 =$
- $62 \times 0.001 = \quad 9 \times 0.001 = \quad 75 \times 0.001 =$
- $4\\text{mm} = _____\\text{m}$
- $9\\text{mm} = _____\\text{m}$
- $6\\text{m} = _____\\text{km}$

Add your own practice items

• **Dividing by 0.1, 0.01, and 0.001 Using a Place-Value-Change Strategy** *(New)*

By exploring the patterns that result when numbers are divided by decimal tenths, hundredths and thousandths, students will see that all the place values of the number being divided increase one place when dividing by 0.1, two places when dividing by 0.01 and three places when dividing by 0.001.

All the place values of the number being divided increase one place when dividing by 0.1, two places when dividing by 0.01 and three places when dividing by 0.001.
Examples
a) For $3 \div 0.1$, think, "The 3 ones will increase to 3 tens, therefore the answer is 30."

b) For $0.4 \div 0.1$, think, "The 4 tenths will increase to 4 ones, therefore the answer is 4."

c) For 3×0.01, think, "The 3 ones will increase to 3 hundreds, therefore the answer is 300."

d) For $0.4 \div 0.01$, think, "The 4 tenths will increase to 4 tens, therefore the answer is 40."

e) For $3.7 \div 0.001$, think, "The 3 ones will increase to 3 thousands and the 7 tenths will increase to 7 hundreds, therefore, the answer is 3700."

f) For $6.423 \div 0.001$, think, "The 6 ones will increase to 6 thousands, the 4 tenths will increase to 4 hundreds, the 2 hundredths will increase to 2 tens, and the 3 thousandths will increase to 3 ones. The answer is 6423."

Practice Items
5 ÷ 0.1 = 7 ÷ 0.1 = 23 ÷ 0.1 =
46 ÷ 0.1 = 0.1 ÷ 0.1 = 2.2 ÷ 0.1 =
0.5 ÷ 0.1 = 1.8 ÷ 0.1 = 425 ÷ 0.1 =
0.02 ÷ 0.1 = 0.06 ÷ 0.1 = 0.15 ÷ 0.1 =
14.5 ÷ 0.1 = 1.09 ÷ 0.1 = 253.1 ÷ 0.1 =
4 ÷ 0.01 = 7 ÷ 0.01 = 4 ÷ 0.01 =
1 ÷ 0.01 = 9 ÷ 0.01 = 0.5 ÷ 0.01 =
0.2 ÷ 0.01 = 0.3 ÷ 0.01 = 0.1 ÷ 0.01 =
0.8 ÷ 0.01 = 5.2 ÷ 0.01 = 6.5 ÷ 0.01 =
1.2 ÷ 0.001 = 0.23 ÷ 0.001 = 0.525 ÷ 0.001 =
2.14 ÷ 0.001 = 3.25 ÷ 0.001 = 5.524 ÷ 0.001 =

Add your own practice items

- Front End Multiplication—The Distributive Principle (Extension)

This strategy, introduced in grade 5, is useful when multiplying 2-, 3-, and 4-digit numbers by 1-digit numbers. It involves calculating the product of the highest place value and the 1-digit number, and then adding this to the sub-product(s) of the other place values and the 1-digit number.

The Distributive Property lets you spread out numbers so they’re easier to work with.

Examples
a) For 3×62, think, "6 tens times 3 is 18 tens (180) and 3 times 2 is 6 for a total of 186."

b) For 706×4, think, "7 hundreds times 4 is 28 hundreds (2800) and 6 times 4 is 24 for a total of 2824."

c) For 5×6100, think, "6 thousand times 5 is 30 thousands, and 5 times 100 is 500; so 30 000 plus 500 is 30 500."

d) For 3.2×6, think, "3 times 6 is 18 and 6 times 2 tenths is 12 tenths or 1 and 2 tenths; so 18 plus 1.2 is 19.2."

e) For 62×0.2, think: "60 times 2 tenths is 120 tenths or 12; and 2 tenths times 2 is 4 tenths or 0.4; so 12 plus 0.4 is 12.4."

f) For 47×0.3, think, "40 times 3 tenths is 120 tenths or 12; and 7 times 3 tenths is 21 tenths or 2.1; so 12 plus 2.1 is 14.1."

Practice Items

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Answer</th>
<th>Calculation</th>
<th>Answer</th>
<th>Calculation</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>53 × 3</td>
<td>159</td>
<td>32 × 4</td>
<td>128</td>
<td>41 × 6</td>
<td>246</td>
</tr>
<tr>
<td>29 × 2</td>
<td>58</td>
<td>83 × 3</td>
<td>249</td>
<td>75 × 3</td>
<td>225</td>
</tr>
<tr>
<td>3 × 503</td>
<td>1509</td>
<td>209 × 9</td>
<td>1881</td>
<td>703 × 8</td>
<td>5624</td>
</tr>
<tr>
<td>606 × 6</td>
<td>3636</td>
<td>503 × 2</td>
<td>1006</td>
<td>804 × 6</td>
<td>4824</td>
</tr>
<tr>
<td>309 × 7</td>
<td>2163</td>
<td>122 × 4</td>
<td>488</td>
<td>320 × 3</td>
<td>960</td>
</tr>
<tr>
<td>6 × 3100</td>
<td>18600</td>
<td>5 × 5100</td>
<td>25500</td>
<td>2 × 4300</td>
<td>8600</td>
</tr>
<tr>
<td>3 × 3200</td>
<td>9600</td>
<td>2 × 4300</td>
<td>8600</td>
<td>7 × 2100</td>
<td>14700</td>
</tr>
<tr>
<td>4.6 × 2</td>
<td>9.2</td>
<td>36 × 0.2</td>
<td>7.2</td>
<td>8.3 × 5</td>
<td>41.5</td>
</tr>
<tr>
<td>43 × 0.5</td>
<td>21.5</td>
<td>96 × 0.3</td>
<td>31.8</td>
<td>83 × 0.9</td>
<td>74.7</td>
</tr>
<tr>
<td>7.9 × 6</td>
<td>47.4</td>
<td>3.7 × 4</td>
<td>14.8</td>
<td>52 × 0.4</td>
<td>20.8</td>
</tr>
<tr>
<td>8.9 × 5</td>
<td>44.5</td>
<td>75 × 0.8</td>
<td>60</td>
<td>3.3 × 7</td>
<td>23.1</td>
</tr>
</tbody>
</table>

Add your own practice items

Compensation (Extension)

This strategy for multiplication was introduced in grade 5 and involves changing one of the factors to a ten, hundred or thousand, carrying out the multiplication, and then adjusting the answer to compensate for the change that was made. This strategy could be used when one of the factors is near a ten, hundred or thousand.

Examples

a) For 6×39, think, “6 groups of 40 is 240. 6 groups of 39 would be 6 less; $240 - 6 = 234$.”

b) For 7×198, think, “7 times 200 is 1400, but this is 14 more than it should be because there were 2 extra in each of the 7 groups; 1400 subtract 14 is 1386.”

c) For 6×4.98, think, “6 times 5 dollars is 30, but I have to subtract 6×2 cents, therefore $30 - 0.12$ is 29.88.”

d) For 3.99×4, think, “4×4 is 16, and 16 – 4 hundredths is 15.96.”

Practice Items

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 × 39</td>
<td>234</td>
</tr>
<tr>
<td>2 × 79</td>
<td>158</td>
</tr>
<tr>
<td>4 × 99</td>
<td>396</td>
</tr>
<tr>
<td>5 × 399</td>
<td>1995</td>
</tr>
<tr>
<td>9 × 198</td>
<td>1782</td>
</tr>
<tr>
<td>29 × 50</td>
<td>1450</td>
</tr>
<tr>
<td>49 × 90</td>
<td>4410</td>
</tr>
<tr>
<td>4.98 × 2</td>
<td>9.96</td>
</tr>
<tr>
<td>9.99×8</td>
<td>79.92</td>
</tr>
<tr>
<td>6.99 × 9</td>
<td>62.91</td>
</tr>
</tbody>
</table>

Add your own practice items

The **Associative Property** of multiplication says that changing the grouping of factors does not change the product. However, subtraction and division are **not** associative.
• Finding Compatible Factors—Associative Property (New)

This strategy for multiplication involves looking for pairs of factors whose product is easy to work with – usually a multiple of ten, such as 10, 20, 50, 100, 200, and so on. Students should be alerted to the danger of overlooking one of the factors as a result of rearranging and combining factors.

Examples

a) For $2 \times 12 \times 5$, think, “2 times 5 is 10 and 10 times 12 is 120.”

b) For $20 \times 7 \times 5$, think, “20 times 5 is 100 and 100 times 7 is 700.”

c) For $25 \times 63 \times 4$, think, “4 times 25 is 100, and 100 times 63 is 6300.”

d) For $2 \times 78 \times 500$, think, “2 times 500 is 1000, and 1000 times 78 is 78 000.”

e) For $5 \times 450 \times 2$, think: “2 times 5 is 10, and 10 times 450 is 4500.”

Practice Items

- $2 \times 3 \times 15 = 80$
- $2 \times 7 \times 5 \times 6 = 210$
- $15 \times 7 \times 2 = 210$
- $5 \times 5 \times 9 \times 2 = 225$
- $5 \times 3 \times 12 = 60$
- $4 \times 38 \times 25 = 25$
- $50 \times 9 \times 2 = 90$
- $3 \times 5 \times 4 \times 4 = 12$
- $25 \times 5 \times 4 \times 5 = 250$
- $5 \times 3 \times 2 \times 9 = 27$
- $500 \times 86 \times 2 = 4000$
- $250 \times 56 \times 4 = 1000$
- $40 \times 25 \times 33 = 1000$
- $20 \times 5 \times 14 = 700$
- $200 \times 16 \times 5 = 1600$
- $500 \times 7 \times 3 \times 2 = 7000$
- $5 \times 19 \times 2 = 20$
- $9 \times 2 \times 2 \times 25 = 900$
- $3 \times 5 \times 4 \times 4 = 60$
- $4 \times 8 \times 50 = 4000$
- $25 \times 5 \times 4 \times 5 = 250$
- $5 \times 3 \times 2 \times 9 = 27$
- $50 \times 9 \times 2 = 90$
- $3 \times 25 \times 2 \times 4 = 150$
- $11 \times 5 \times 2 \times 9 = 150$

Add your own practice items

• Halving and Doubling (New)

This strategy involves halving one factor and doubling the other factor in order to get two new factors that are easier to calculate. Halving and doubling is a situation where students may need to record some sub-steps.

Examples

a) For 42×50, think, “One-half of 42 is 21 and 50 doubled is 100; 21 \times 100 is 2100.”

b) For 500×88, think, “Double 500 to get 1000 and one-half of 88 is 44; so 1000 \times 44 is 44 000.”

c) For 12×2.5, think, “One-half of 12 is 6 and double 2.5 is 5; 6 \times 5 is 30.”

d) For 4.5×2.2, think, “Double 4.5 to get 9 and one-half of 2.2 is 1.1; therefore, 9 \times 1.1 is 9.9.”

e) For 140×35, think, “One-half of 140 is 70 and double 35 is 70; so 70 \times 70 is 4900.”

Practice Items

- $86 \times 50 = 4300$
- $50 \times 28 = 1400$
- $64 \times 500 = 32000$
- $500 \times 46 = 23000$
- $52 \times 50 = 2600$
- $500 \times 70 = 35000$
- $18 \times 2.5 = 45$
- $2.5 \times 22 = 55$
- $86 \times 2.5 = 215$
- $0.5 \times 120 = 60$
- $3.5 \times 2.2 = 7.7$
- $1.5 \times 6.6 = 9.9$
- $180 \times 45 = 8100$
- $160 \times 35 = 5600$
- $140 \times 15 = 2100$

Add your own practice items

The halve-and-double approach can be applied to any problem with an even factor, but is most useful with 5, 50, and 500 and also with 25 and 250.
• **Using Division Facts for Tens, Hundreds and Thousands** (New)

This strategy applies to dividends of tens, hundreds and thousands divided by a single digit divisor. There would be only one non-zero digit in the quotient.

Examples

a) For $60 ÷ 3$, think, “6 ÷ 3 is 2, and tens divided by ones equals tens; therefore the answer is 2 tens or 20.”

b) For $12000 ÷ 4$, think, “12 ÷ 4 is 3, and thousands divided by ones is thousands, so the answer is 3 thousand or 3000”

c) For $4800 ÷ 8$, think, “48 ÷ 8 is 6, and hundreds divided by ones is hundreds, so the answer is 6 hundreds or 600.”

Practice items

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$90 ÷ 3$</td>
<td>$60 ÷ 2$</td>
<td>$40 ÷ 5$</td>
</tr>
<tr>
<td>$120 ÷ 6$</td>
<td>$210 ÷ 7$</td>
<td>$240 ÷ 6$</td>
</tr>
<tr>
<td>$180 ÷ 9$</td>
<td>$450 ÷ 9$</td>
<td>$560 ÷ 8$</td>
</tr>
<tr>
<td>$800 ÷ 4$</td>
<td>$200 ÷ 1$</td>
<td>$600 ÷ 3$</td>
</tr>
<tr>
<td>$3500 ÷ 7$</td>
<td>$1600 ÷ 4$</td>
<td>$7200 ÷ 8$</td>
</tr>
<tr>
<td>$7200 ÷ 9$</td>
<td>$2000 ÷ 4$</td>
<td>$2400 ÷ 3$</td>
</tr>
<tr>
<td>$2400 ÷ 4$</td>
<td>$2400 ÷ 8$</td>
<td>$2400 ÷ 6$</td>
</tr>
<tr>
<td>$8100 ÷ 9$</td>
<td>$4900 ÷ 7$</td>
<td>$3000 ÷ 5$</td>
</tr>
<tr>
<td>$4000 ÷ 2$</td>
<td>$3000 ÷ 1$</td>
<td>$9000 ÷ 3$</td>
</tr>
<tr>
<td>$35000 ÷ 5$</td>
<td>$72000 ÷ 9$</td>
<td>$36000 ÷ 6$</td>
</tr>
<tr>
<td>$40000 ÷ 8$</td>
<td>$12000 ÷ 4$</td>
<td>$64000 ÷ 8$</td>
</tr>
<tr>
<td>$28000 ÷ 4$</td>
<td>$42000 ÷ 6$</td>
<td>$10000 ÷ 2$</td>
</tr>
</tbody>
</table>

Add your own practice items

There are relatively few workable divisions that can be done mentally compared with the other three operations.

• **Partitioning the Dividend** (New)

This strategy for division involves partitioning the dividend into two parts, both of which are easily divided by the given divisor. Students should look for a ten, hundred or thousand that is an easy multiple of the divisor and that is close to, but less than, the given dividend. Most students will need to record the sub-steps involved in this strategy.

Examples

a) For $372 ÷ 6$, think, “($360 + 12$) ÷ 6, so $60 ÷ 2$ is 62.”

b) For $3150 ÷ 5$, think: ($3000 + 150$) ÷ 5, so $600 ÷ 3$ is 630.

Practice items

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$248 ÷ 4$</td>
<td>$224 ÷ 7$</td>
<td>$504 ÷ 8$</td>
</tr>
<tr>
<td>$432 ÷ 6$</td>
<td>$344 ÷ 8$</td>
<td>$1720 ÷ 4$</td>
</tr>
<tr>
<td>$8280 ÷ 9$</td>
<td>$5110 ÷ 7$</td>
<td>$3320 ÷ 4$</td>
</tr>
</tbody>
</table>

Add your own practice items
MENTAL MATH

Estimation
Estimation – Addition and Subtraction

When asked to estimate, students often try to do the exact computation and then "round" their answer to produce an estimate that they think their teacher is looking for. Students need to see that estimation is a valuable and useful skill, one that is used on a daily basis by many people.

Estimates can be very broad and general, or they can be quite close to the actual answer. It all depends on the reason for estimating in the first place, and these reasons can vary in context and according to the needs of the individual at the time.

Help students identify situations outside of school where they would estimate distances, number, temperature, length of time and discuss how accurate their estimates needed to be. Place these situations on an estimation continuum with broad, ball-park estimates at one end and estimates that are very close to the actual answer at the other.

For example:

In mathematics, it is essential that estimation strategies are used by students before attempting pencil/paper or calculator computations to help them determine whether or not their answers are reasonable. When teaching estimation strategies, it is important to use words and phrases such as: about, almost, between, approximately, a little more than, a little less than, close to and near.

In mathematics, it is essential that estimation strategies are used by students before attempting pencil/paper or calculator computations to help them determine whether or not their answers are reasonable.
Nearly all computational estimations involve replacing or substituting difficult-to-handle numbers with numbers that can be more easily dealt with mentally.

- **Rounding in Addition and Subtraction**

With this strategy for addition and subtraction, you start with the highest place values in each number, round them to the closest 10, 100 or 1000, and then add or subtract the rounded numbers.

Examples

a) To estimate 378 + 230, think, “378 rounds to 400 and 230 rounds to 200; so, 400 plus 200 is 600.”

b) To estimate 4276 + 3937, think, “4276 rounds to 4000 and 3937 rounds to 4000, so 4000 plus 4000 is 8000.”

c) To estimate 594 - 203, think, “594 rounds to 600 and 203 rounds to 200, so 600 subtract 200 is 400.”

d) To estimate 6237 – 2945, think, “6237 rounds to 6000 and 2945 rounds to 3000, so 6000 subtract 3000 is 3000.”

Practice Items

- 28 + 57 =
- 303 + 49 =
- 6110 + 3950 =
- 36 – 22 =
- 834 – 587 =
- 4807 – 1203 =
- 41 + 34 =
- 137 + 641 =
- 4460 + 7745 =
- 43 – 8 =
- 947 – 642 =
- 7856 – 1250 =
- 123 + 62 =
- 223 + 583 =
- 1370 + 6410 =
- 54 – 18 =
- 780 - 270 =
- 5029 – 4020 =

Add your own practice items

There are many mental methods for exact and approximate computations. Each can be practiced and learned, but there is no “right” method for any given situation.

- **Rounding with “Fives”**

 a) **Addition**

 When the digit 5 is involved in the rounding procedure for numbers in the 10s, 100s, and 1000s, the number can be rounded up or down depending upon the effect the rounding will have in the overall calculation. For example, if both numbers to be added are about 5, 50, or 500, it is better to round one number up and one number down to minimize the effect the rounding will have in the estimation.
Examples

a) For $45 + 65$, think, “Since both numbers involve 5s, it would be best to round to 40 + 70 to get 110.”
b) For $4520 + 4610$, think, “Since both numbers are both close to 500, it would be best to round to 4000 + 5000 to get 9000.”

Practice Items

$35 + 55 =$	$45 + 31 =$	$26 + 35 =$
$250 + 650 =$	$653 + 128 =$	$179 + 254 =$
$384 + 910 =$	$137 + 641 =$	$798 + 387 =$
$530 + 660 =$	$350 + 550 =$	$450 + 319 =$
$2500 + 4500 =$	$4550 + 4220 =$	$6810 + 1550 =$
$5184 + 2958 =$	$4867 + 6219 =$	$7760 + 3140 =$

Add your own practice items

Students should estimate automatically whenever faced with a calculation. Facility with basic facts and mental math strategies is key to estimation.

b) Subtraction

For subtraction, the process of estimation is similar to addition, except for situations where both numbers are close to 5, 50, or 500. In these situations, both numbers should be rounded up. If you round one number up and one down, it will increase the difference between the two numbers and your estimate will be farther from the actual answer.

Examples

a) To estimate $594 - 203$, think, “594 rounds to 600 and 203 rounds to 200; so, 600 - 200 is 400.”
b) To estimate $6237 – 2945$, think, “6237 rounds to 6000 and 2945 rounds to 3000; so, 6000 - 3000 is 3000.”
c) To estimate $5549 – 3487$, think, “Both numbers are close to 500, so round both up; 6000 - 4000 is 2000.”

Practice Items

$427 – 192 =$	$984 – 430 =$	$872 – 389 =$
$594 – 313 =$	$266 – 94 =$	$843 – 715 =$
$834 – 587 =$	$947 – 642 =$	$782 – 277 =$
$4768 – 3068 =$	$6892 – 1812 =$	$7368 – 4817 =$
$4807 – 1203 =$	$7856 – 1250 =$	$5029 – 4020 =$
$8876 – 3640 =$	$9989 – 4140 =$	$1754 – 999 =$

Add your own practice items

Ongoing practice in computational estimation is a key to developing understanding of numbers and number operations and increasing mental process skills.
• Rounding in Multiplication (Continued from Grade 5)

Here are some examples of rounding in multiplication questions involving a double digit factor by a triple digit factor.

a) For 688 × 79, think, “688 rounds to 700 and 79 rounds to 80; 700 × 80 = 56 000.”
b) For 432 × 81, think, “432 rounds to 400 and 81 rounds to 80; 400 × 80 = 32 000.”

• Rounding With “Fives” (Extended from Grade 5)

When the digit 5 is involved in the rounding procedure for numbers in the 10s, 100s, and 1000s, consider rounding the smaller factor up and the larger factor down to give a more accurate estimate.

For example, with a conventional rounding rule, 653 × 45 would be 700 × 50 = 35 000 which would not be close to the actual product of 29 385.

By rounding the smaller factor up and the larger factor down, you get 600 x 50 which provides an estimate of 30 000, which is much closer to the actual answer.

Practice items
593 × 41 = 687 × 52 = 708 × 49 =
358 x 35 = 879 × 22 = 912 x 11 =
384 × 68 = 88 × 473 = 972 x 87 =
365 × 27 = 754 x 15 = 463 × 48 =
567 × 88 = 485 x 25 = 87 × 371 =
652 x 45 = 363 x 82 = 658 x 66 =
562 × 48 = 65 x 874 = 259 x 75 =

Add your own practice items

Computational estimation is a mental activity; therefore, regular oral practice, accompanied by the sharing of strategies must be provided.

• Rounding in Division (New)

When estimating the answer to division questions which have a double digit divisor and a triple digit dividend, the same rounding procedure can be applied and used with a “think multiplication” strategy.

For example, to estimate 789 ÷ 89, round 789 to 800 and 89 to 80 and think, “90 multiplied by what number would give an answer close to 800? 90 x 9 = 810, so 800 ÷ 90 is about 9.”

Practice Items
411 ÷ 19 = 360 ÷ 78 = 461 ÷ 46 =
581 ÷ 29 = 352 ÷ 55 = 317 ÷ 51 =
333 ÷ 57 = 801 ÷ 36 = 3610 ÷ 76 =
4384 ÷ 77 = 2689 ÷ 57 = 2528 ÷ 15 =
3989 ÷ 43 = 5601 ÷ 28 = 8220 ÷ 36 =
1909 ÷ 18 = 1794 ÷ 36 = 4617 ÷ 68=

Add your own practice items

Estimation must be used with all computations, but when an exact answer is required, students need to decide whether it is more appropriate to use a mental strategy, pencil and paper, or some form of technology.
OVERVIEW OF THINKING STRATEGIES IN MENTAL MATH
Thinking Strategies in Mental Math

Mental math proficiency represents one important dimension of mathematical knowledge. Not all individuals will develop rapid mental number skills to the same degree. Some will find their strength in mathematics through other avenues, such as visual or graphic representations or creativity in solving problems. But mental math has a clear place in school mathematics. It is an area where many parents and families feel comfortable offering support and assistance to their children.

The following table identifies all of the thinking strategies in Mental Math: Fact Learning, Mental Computation and Estimation and the grade level in which they are first introduced. These strategies are then extended and developed in subsequent years.

For example, Front End Addition involving 2-digit numbers is first introduced in grade 2, continued in grade 3, extended to 3-digit numbers in grade 4, and to decimal tenths, hundredths, and thousandths in grades 5 and 6. The Mental Math section found in each grade level’s mathematics curriculum guide contains a complete description of each strategy with examples and practice items.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td></td>
</tr>
<tr>
<td>Pre-Operation</td>
<td></td>
</tr>
<tr>
<td>• Patterned Set Recognition</td>
<td>Students are able to identify common configuration sets of numbers such as the dots on a standard die, dominoes and dot cards without counting.</td>
</tr>
<tr>
<td>• Part-Part-Whole Relationships</td>
<td>Recognition of two parts in a whole. Leads to the understanding that numbers can be decomposed into component parts.</td>
</tr>
<tr>
<td>• Counting On and Back</td>
<td>Students can count on and back from a given number 0-9.</td>
</tr>
<tr>
<td>• Next Number</td>
<td>Students are able to immediately state the number that comes after any given number from 0-9.</td>
</tr>
<tr>
<td>• Ten-Frame Visualization for Numbers 0-10</td>
<td>Students can visualize the standard ten-frame representation of numbers and answer questions from their visual memories.</td>
</tr>
<tr>
<td>• One More/One Less, Two More/Two Less Relationships</td>
<td>Students are presented with a number and asked for the number that is one more, one less, two more, or two less than the number.</td>
</tr>
<tr>
<td>Addition Facts to 10</td>
<td></td>
</tr>
<tr>
<td>• Doubles</td>
<td>Doubles posters created as visual images</td>
</tr>
<tr>
<td>• Plus 1 Facts</td>
<td>Next number facts</td>
</tr>
<tr>
<td>• Plus 2 Facts</td>
<td>Ten-frame, skip counting, 2-more-than relationship, counting on</td>
</tr>
<tr>
<td>• Plus 3 Facts</td>
<td>Ten-frame, 2-more-than plus 1, counting on</td>
</tr>
<tr>
<td>Subtraction Facts With Minuends to 10</td>
<td></td>
</tr>
<tr>
<td>• Think-Addition</td>
<td>For 9 - 3, think, “3 plus what equals 9?”</td>
</tr>
<tr>
<td>• Ten Frame Visualization</td>
<td>Visualize the minuend on a ten-frame, remove the subtrahend, to determine the difference.</td>
</tr>
<tr>
<td>• Counting Back</td>
<td>For -1, -2, -3 facts</td>
</tr>
<tr>
<td>Adding 10 to a Number</td>
<td>For numbers 11-20</td>
</tr>
</tbody>
</table>
Grade 2

<table>
<thead>
<tr>
<th>Addition Facts to 18</th>
<th>Subtraction Facts With Minuends to 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Near Doubles</td>
<td>• For 13 - 8, think, “From 8 up to 10 is 2, and then 3 more is 5.”</td>
</tr>
<tr>
<td>• 2-Aparts</td>
<td>• For 14 - 6, think, “14 - 4 gets me to 10, and then 2 more brings me to 8.”</td>
</tr>
<tr>
<td>• Plus zero</td>
<td></td>
</tr>
<tr>
<td>• Make 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Double the smaller number and add 1</td>
<td></td>
</tr>
<tr>
<td>Double the number in between</td>
<td></td>
</tr>
<tr>
<td>No change facts</td>
<td></td>
</tr>
<tr>
<td>For facts with 8 or 9 as addends. Eg. 7 + 9 is the same as 10 + 6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Addition facts extended to numbers in the 10's</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Apart Facts: 3 + 5 is double 4, so 30 + 50 is double 40.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Front-end Addition</th>
<th>Finding Compatibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest place values are totaled first and then added to the sum of the remaining place values.</td>
<td>Looking for pairs of numbers that add easily, particularly, numbers that add to 10.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compensation</th>
<th>Rounding in Addition and Subtraction (5 or 50 not involved in rounding process until grade 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One or both numbers are changed to make the addition easier and the answer adjusted to compensate for the change.</td>
<td>Round to nearest 10.</td>
</tr>
</tbody>
</table>

Grade 3

<table>
<thead>
<tr>
<th>Multiplication Facts (products to 36 with single digit factors)</th>
<th>Break Up and Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>• x 2 facts</td>
<td>With this front-end strategy, you start with all of the first number and add it to the highest place value in the other number, and then add on the rest.</td>
</tr>
<tr>
<td>• Fives</td>
<td></td>
</tr>
<tr>
<td>• Ones</td>
<td></td>
</tr>
<tr>
<td>• Tricky Zeros</td>
<td></td>
</tr>
<tr>
<td>• Fours</td>
<td></td>
</tr>
<tr>
<td>• Threes</td>
<td></td>
</tr>
<tr>
<td>• Related to the addition doubles</td>
<td></td>
</tr>
<tr>
<td>• Clock facts, patterns</td>
<td></td>
</tr>
<tr>
<td>• No change facts</td>
<td></td>
</tr>
<tr>
<td>• Groups of zero</td>
<td></td>
</tr>
<tr>
<td>• Double-double</td>
<td></td>
</tr>
<tr>
<td>• Double plus 1 more set</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Front-End Estimation for Addition and Subtraction</th>
<th>Adjusted Front-End Estimation for Addition and Subtraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add or subtract just the largest place values in each number to produce a “ball park” estimate.</td>
<td>Same as above, except the other place values are considered for a more accurate estimate.</td>
</tr>
</tbody>
</table>
Grade 4

Make 10's, 100's, 1000's for addition	48 + 36 is the same as 50 + 34 which is 84
Multiplication Facts to 9 x 9	Patterns, helping fact For facts not already covered by previous thinking strategies
• Nifty Nines	
• Last Six Facts	
Subtraction facts extended to numbers in the 10's, 100's, 1000's	Only 1 non-zero digit in each number eg., 600 - 400 =
Compensation (new for subtraction)	For 17-9, think, “17 - 10 is 7, but I subtracted 1 too many, so the answer is 8.”
Break Up and Bridge (new for subtraction)	For 92 - 26, think, “92 - 20 is 72 and then 6 more is 66.”
Multiply by 10 and 100 using a place-value-change strategy	The place values for a number multiplied by 100 increase 2 places. Eg. 34 x 100; The 4 ones becomes 4 hundreds and the 3 tens becomes 3 thousand; 3000 + 400 = 3400

Grade 5

<p>| Multiplication Facts to 81 and Related Division Facts | Mastery by year-end For 36 ÷ 6, think “6 times what equals 36?” |
| • “Think-Multiplication” | |
| Balancing for a Constant Difference | Involves changing both number in a subtraction sentence by the same amount to make it easier to complete. The difference between the two numbers remains the same. Eg. for 27 - 16, add 3 to each number and think, “30 - 19 = 11” |
| Multiply by 0.1, 0.01, 0.001 using a place-value-change strategy | The place values for a number multiplied by 0.1 decrease 1 place. Eg. 34 x 0.1; The 4 ones becomes 4 tenths and the 3 tens becomes 3 ones; 3 and 4 tenths, or 3.4. |
| Front-End Multiplication (Distributive Principle) | Involves finding the product of the single-digit factor and the digit in the highest place value of the second factor, and adding to this product a second sub-product. 706 x 2 = (700 x 2) + (6 x 2) = 1412 |
| Compensation in Multiplication | Involves changing one factor to a 10 or 100, carrying out the multiplication, and then adjusting the product to compensate for the change. 7 x 198 = 7 x 200 (1400) subtract 14 = 1386 |
| Divide by 10, 100, 1000 using a place-value-change strategy. | The place values for a number divided by 10 decrease 1 place. Eg. 34 ÷ 10; The 4 ones becomes 4 tenths and the 3 tens becomes 3 ones; 3 and 4 tenths, or 3.4. |
| Rounding in Multiplication | Highest place values of factors are rounded and multiplied. When both numbers are close to 5 or 50, one number rounds up and the other down. |</p>
<table>
<thead>
<tr>
<th>Grade 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divide by 0.1, 0.01, 0.001 using a place-value- change strategy</td>
</tr>
<tr>
<td>The place values for a number divided by 0.01 increase 2 places. E.g. 34 ÷ 0.01; The 4 ones becomes 4 hundreds and the 3 tens becomes 3 thousand; 3000 + 400 = 3400</td>
</tr>
<tr>
<td>Finding Compatible Factors (Associative Property)</td>
</tr>
<tr>
<td>Involves looking for pairs of factors, whose product is easy to work with, usually multiples of 10. For example, for 2 x 75 x 500, think, “2 x 500 = 1000 and 1000 x 75 is 75000.”</td>
</tr>
<tr>
<td>Halving and Doubling</td>
</tr>
<tr>
<td>One factor is halved and the other is doubled to make the multiplication easier. Students would need to record sub-steps. For example, 500 x 88 = 1000 x 44 = 44 000.</td>
</tr>
<tr>
<td>Using division facts for 10’s, 100’s, 1000’s</td>
</tr>
<tr>
<td>Dividends in the 10’s, 100’s, and 1000’s are divided by single digit divisors. The quotients would have only one digit that wasn’t a zero. For example, for 12 000 ÷ 4, think single digit division facts: 12 ÷ 4 = 3, and thousands divided by ones is thousands, so the answer is 3000.</td>
</tr>
<tr>
<td>Partitioning the Dividend (Distributive Property)</td>
</tr>
<tr>
<td>The dividend is broken up into two parts that are more easily divided by the divisor. For example, for 372 ÷ 6, think, “(360 + 12) ÷ 6, so 60 + 2 is 62.”</td>
</tr>
</tbody>
</table>

MENTAL MATH: FACT LEARNING SCOPE AND SEQUENCE

GRADE 1 FACT LEARNING

Pre-operation Strategies
- Patterned Set Recognition for numbers 1-6 (not dependent on counting)
- Part-Part-Whole Relationships
- Counting On, Counting Back
- Next Number
- Ten Frame Recognition and Visualization for Numbers 0-10
- One More/One Less and Two More/Two Less Relationships

Addition Facts With Sums to 10 Thinking Strategies
- Doubles
- Plus 1 Facts
- Plus 2 Facts
- Plus 3 Facts
- Ten Frame Facts

Subtraction Facts With Minuends to 10 Thinking Strategies
- Think-Addition
- Ten Frame Facts
- Counting Back

GRADE 2 FACT LEARNING

Addition and Subtraction Facts
- Mastery of facts with sums and minuends to 10 by mid-year
- Mastery of facts with sums and minuends to 18 by year end

New Thinking Strategies for Addition
- Near Doubles/Doubles Plus One/1-Aparts
- 2-Apart Facts
- Plus 0 Facts
- Make 10 Facts

New Thinking Strategies for Subtraction Facts
- Up Through 10
- Back Down Through 10

GRADE 3 FACT LEARNING

Addition
- Review and reinforce facts with sums to 18 and thinking strategies
- Addition facts extended to 2-digit numbers: Think single-digit addition facts and apply the appropriate place value.

Subtraction
- Review and reinforce facts with minuends to 18 and thinking strategies.
- Subtraction facts extended to 2-digit numbers. Think single-digit subtraction facts and apply the appropriate place value.

Multiplication Facts Thinking Strategies (products to 36 with single digit factors)
- x2 Facts (related to addition doubles)
- x5 Facts (clock facts, patterns)
- x1 Facts (“no-change” facts)
- x0 Facts (products of zero)
- x4 Facts (double-double)
- x3 Facts (double plus 1 set)

GRADE 4 FACT LEARNING

Addition and Subtraction
- Review and reinforce thinking strategies for addition and subtraction facts with sums/minuends to 18

Multiplication Thinking Strategies (focus 9x9)
- x2 Facts (related to addition doubles)
- x10 Facts (patterns)
- x5 Facts (clock facts, patterns)
- x1 Facts (“no-change” facts)
- x0 Facts (products of zero)
- x4 Facts (double-double)
- x3 Facts (double plus 1 set)
- Last Six Facts (new: various strategies)
MENTAL MATH: FACT LEARNING SCOPE AND SEQUENCE (continued)

<table>
<thead>
<tr>
<th>GRADE 5 FACT LEARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition and Subtraction</td>
</tr>
<tr>
<td>Review and reinforce thinking strategies for addition and subtraction facts with sums/minuends to 18</td>
</tr>
<tr>
<td>Multiplication</td>
</tr>
<tr>
<td>• Review and reinforce thinking strategies for multiplication facts (focus 9x9)</td>
</tr>
<tr>
<td>• Mastery by year end</td>
</tr>
<tr>
<td>Division</td>
</tr>
<tr>
<td>• Review and reinforce thinking strategies for division facts with dividends to 81 (related facts to 9x9) using a “Think-Multiplication” strategy</td>
</tr>
<tr>
<td>• Mastery by year end</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRADE 6 FACT LEARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Review Addition, Subtraction, Multiplication and Division Facts</td>
</tr>
<tr>
<td>• Reintroduce thinking strategies to struggling students</td>
</tr>
<tr>
<td>• See the Mental Math section in each grade level’s mathematics curriculum guide for a complete description of each strategy with examples and practice items. Mental Math sections are part of the mathematics curriculum guide for each grade from grade one to six inclusively.</td>
</tr>
</tbody>
</table>
MENTAL MATH: MENTAL COMPUTATION SCOPE AND SEQUENCE

GRADE 1 MENTAL COMPUTATION

Addition
- Adding 10 to a number without counting

GRADE 2 MENTAL COMPUTATION

Addition
- Addition facts extended to 2-digit numbers. Think *single-digit addition* facts and apply the appropriate place value. (New)
- Front End Addition (2-digit numbers)
- Finding Compatibles (single-digit number combinations that make 10)
- Compensation (single-digit numbers)

Subtraction
- *Think-Addition* (extended to 2-digit numbers)

GRADE 3 MENTAL COMPUTATION

Addition
- Front End Addition (continued from Grade 2)
- Break Up and Bridge (New)
- Finding Compatibles (single digit numbers that add up to 10, 2-digit numbers that add up to 100)
- Compensation (extended to 2-digit numbers)

Subtraction
- Back Down Through 10s (extended to subtraction of a single digit from a 2-digit number)
- Up Through 10s (extended to 2-digit numbers)

GRADE 4 MENTAL COMPUTATION

Addition
- Facts Extended to Addition of Numbers in 10s, 100s, and 1000s
- Front End Addition (extended to numbers in 1000s)
- Break Up and Bridge (extended to numbers in 100s)
- Compensation (extended to numbers in 100s)
- Make 10s, 100s, 1000s (Extension)

Subtraction
- Facts Extended to Subtraction of Numbers in 10s, 100s, and 1000s
- Back Down Through 10s (extended to numbers in 100s)
- Up Through 10s (extended to numbers in the 100s)
- Compensation (New for Subtraction)
- Break Up and Bridge (New for Subtraction)

Multiplication
- Multiplying to 10 and 100 using a “place-value-change” strategy rather than an “attach zeros” strategy

GRADE 5 MENTAL COMPUTATION

Addition
- Front End Addition (extended to decimal 10th and 100th)
- Break Up and Bridge (extended to numbers in 1000s and to decimal 10th’s and 100th’s)
- Finding Compatible (extended to 1000s and to decimal 10th’s and 100th’s)
- Compensation (extended to numbers in 1000s and to decimal 10th’s and 100th’s)
- Make 10s, 100s, 1000s (continued from Grade 4)

Subtraction
- Back Down Through 10s, 100s, 1000s (Extension)
- Up Through 10s (extended to numbers in the 1000s and to decimal 10th’s and 100th’s)
- Compensation (extended to numbers in 1000s)
- Break Up and Bridge (extended to numbers in 1000s)

Multiplication
- Facts Extended to 10s, 100s and 1000s
- Multiplying by 10, 100, 1000 using a “Place-Value-Change” strategy, rather than an “attach zeros” strategy (continued from Grade 4)
- Multiplying by 0.1, 0.01, and 0.001 using a place-value-change strategy (New)
- Front End Multiplication (New)
- Compensation (New for Multiplication)
GRADE 6 MENTAL COMPUTATION

Addition
Practice items provided for review of mental computation strategies for addition.
- Front End
- Break Up and Bridge
- Finding Compatibles
- Compensation
- Make 10s, 100s, 1000s

Subtraction
- Back Down Through 10s, 100s, 1000s
- Up Through 10s, 100s, 1000s
- Compensation
- Balancing for a Constant Difference (continued from Grade 5)
- Break Up and Bridge (extended to numbers in 10 000s)

Multiplication and Division
- Multiplying and Dividing by 10, 100, 1000 using a “Place-Value-Change” strategy
- Multiplying by 0.1, 0.01, and 0.001 (continued from Grade 5)
- Dividing by 0.1, 0.01, 0.001 using a “Place-Value-Change” strategy (New)
- Front End Multiplication (continued from Grade 5)
- Compensation (continued from Grade 5)
- Finding Compatible Factors (New)
- Halving and Doubling (New)
- Using Division Facts for 10s, 100s, 1000s (New)
- Dividends of 10s, 100s, 1000s divided by single-digit divisors
- Partitioning The Dividend (New)
MENTAL MATH: ESTIMATION SCOPE AND SEQUENCE

<table>
<thead>
<tr>
<th>Grade</th>
<th>Estimation Scope and Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1 Estimation</td>
<td>Due to the focus on Pre-Operational Skills being reinforced in Grade 1, there are no estimation thinking strategies outlined at this level. However, students are asked to estimate quantities to 20 by using referents (see Number Outcome N6).</td>
</tr>
<tr>
<td>Grade 2 Estimation</td>
<td>- Rounding in Addition and Subtraction (2-digit numbers; 5 is not involved in the rounding procedure until Grade 4)</td>
</tr>
</tbody>
</table>
| **Grade 3 Estimation** | - Front End Addition and Subtraction (New)
- Rounding in Addition and Subtraction (extended to 3-digit numbers; 5 or 50 not involved in the rounding procedure until Grade 4)
- Adjusted Front End in Addition and Subtraction (new) |
| **Grade 4 Estimation** | - Rounding in Addition and Subtraction (extended to 4-digit numbers and involving 5, 50 and 500 in the rounding procedure)
- Adjusted Front End in Addition and Subtraction (extended to numbers in 1000s) |
| **Grade 5 Estimation** | - Rounding in Addition and Subtraction (continued from Grade 4)
- Rounding in Multiplication (2-or-3-digit factor by single digit factor; 2-digit by 2-digit)
- Adjusted Front End in Addition and Subtraction (extended to decimal 10ths and 100ths) |
| **Grade 6 Estimation** | - Rounding in Addition and Subtraction (continued from Grade 5)
- Rounding in Multiplication (extended from Grade 5 to include 3-digits by 2-digits)
- Rounding in Division (New) |
GLOSSARY OF MODELS

This glossary is identical for all grade levels (kindergarten to grade 8). Most of the models have a variety of uses at different grade levels. More information as to which models can be used to develop specific curriculum outcomes is located on the Instructional Strategies section of each four-page spread in this curriculum document. The purpose of this glossary is to provide a visual of each model and a brief description of it.

<table>
<thead>
<tr>
<th>Name</th>
<th>Picture</th>
<th>Description</th>
</tr>
</thead>
</table>
| Algebra Tiles | ![Image](image1.png) | - Sets include “X” tiles (rectangles), “X²” tiles (large squares), and integer tiles (small squares).
- All tiles have a different colour on each side to represent positive and negative. Typically the “X” tiles are green and white and the smaller squares are red and white.
- Some sets also include “Y” sets of tiles which are a different colour and size than the “X” tiles. |
| Area Model | ![Image](image2.png) | - Use base ten blocks to represent the parts of each number that is being multiplied.
- To find the answer for the example shown, students can add the various parts of the model: 200 + 30 + 40 + 6 = 276.
- This model can also be used for fraction multiplication. |
| Arrays and Open Arrays | ![Image](image3.png) | - Use counters arranged in equal rows or columns or a Blackline Master with rows and columns of dots.
- Helpful in developing understanding of multiplication facts.
- Grids can also be used to model arrays.
- Open arrays allows students to think in amounts that are comfortable for them and does not lock them into thinking using a specific amount. These arrays help visualize repeated addition and partitioning and ultimately using the distributive property. |
| Attribute Blocks | ![Image](image4.png) | - Sets of blocks that vary in their attributes:
 - 5 shapes: circle, triangle, square, hexagon, rectangle
 - 2 thicknesses
 - 2 sizes
 - 3 colours |
| Balance (pan or beam) Scales | ![Image](image5.png) | - Available in a variety of styles and precision.
- Pan balances have a pan or platform on each side to compare two unknown amounts or represent equality. Weights can be used on one side to measure in standard units.
- Beam balances have parallel beams with a piece that is moved on each beam to determine the mass of the object on the scale. Offer greater accuracy than a pan balance. |
| **Base Ten Blocks** | • Include unit cubes, rods, flats, and large cubes.
| | • Available in a variety of colours and materials (plastic, wood, foam).
| | • Usually 3-D. |
| **Beam Balance** | see Balance (pan or beam) |
| **Carroll Diagram** | Example:
| |
| | 1-digit | 2-digit
| | Even | 2, 4, 6, 8 | 26, 34
| | Odd | 1, 3, 5, 7, 9 | 15, 21
| | • Used for classification of different attributes.
| | • The table shows the four possible combinations for the two attributes.
| | • Similar to a Venn Diagram |
| **Colour Tiles** | • Square tiles in 4 colours (red, yellow, green, blue).
| | • Available in a variety of materials (plastic, wood, foam). |
| **Counters (two colour)** | • Counters have a different colour on each side.
| | • Available in a variety of colour combinations, but usually are red & white or red & yellow.
| | • Available in different shapes (circles, squares, bean). |
| **Cubes (Linking)** | • Set of interlocking 2 cm cubes.
| | • Most connect on all sides.
| | • Available in a wide variety of colours (usually 10 colours in each set).
| | • Brand names include: Multilink, Hex-a-Link, Cube-A-Link.
| | • Some types only connect on two sides (brand name example: Unifix). |
| **Cuisenaire Rods®** | • Set includes 10 different colours of rods.
| | • Each colour represents a different length and can represent different number values or units of measurement.
| | • Usual set includes 74 rods (22 white, 12 red, 10 light green, 6 purple, 4 yellow, 4 dark green, 4 black, 4 brown, 4 blue, 4 orange).
| | • Available in plastic or wood. |
Dice (Number Cubes)
- Standard type is a cube with numbers or dots from 1 to 6 (number cubes).
- Cubes can have different symbols or words.
- Also available in:
 - 4-sided (tetrahedral dice)
 - 8-sided (octahedral dice)
 - 10-sided (decahedra dice)
 - 12-sided, 20-sided, and higher
 - Place value dice

Dominoes
- Rectangular tiles divided in two-halves.
- Each half shows a number of dots: 0 to 6 or 0 to 9.
- Sets include tiles with all the possible number combinations for that set.
- Double-six sets include 28 dominoes.
- Double-nine sets include 56 dominoes.

Dot Cards
- Sets of cards that display different number of dots (1 to 10) in a variety of arrangements.
- Available as free Blackline Master online on the “Teaching Student-Centered Mathematics K-3” website (BLM 3-8).

Decimal Squares®
- Tenths and hundredths grids that are manufactured with parts of the grids shaded.
- Can substitute a Blackline Master and create your own class set.

Double Number Line
- see Number lines (standard, open, and double)

Five-frames
- see Frames (five- and ten-)

Fraction Blocks
- Also known as Fraction Pattern blocks.
- 4 types available: pink “double hexagon”, black chevron, brown trapezoid, and purple triangle.
- Use with basic pattern blocks to help study a wider range of denominators and fraction computation.

Fraction Circles
- Sets can include these fraction pieces:

 \[
 \frac{1}{12}, \frac{1}{10}, \frac{1}{8}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}
 \]
- Each fraction graduation has its own colour.
- It is helpful to use ones without the fractions marked on the pieces for greater flexibility (using different piece to represent 1 whole).
Fraction Pieces
- Rectangular pieces that can be used to represent the following fractions:
 \[
 \frac{1}{2}, \frac{1}{4}, \frac{1}{3}, \frac{1}{5}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}, \frac{1}{12}
 \]
- Offers more flexibility as different pieces can be used to represent 1 whole.
- Each fraction graduation has its own colour.
- Sets available in different quantities of pieces.

Frames (five- and ten-)
- Available as a Blackline Master in many resources or you can create your own.
- Use with any type of counter to fill in the frame as needed.

Geoboards
- Available in a variety of sizes and styles.
 - 5 × 5 pins
 - 11 × 11 pins
 - Circular 24 pin
 - Isometric
- Clear plastic models can be used by teachers and students on an overhead.
- Some models can be linked to increase the size of the grid.

Geometric Solids
- Sets typically include a variety of prisms, pyramids, cones, cylinders, and spheres.
- The number of pieces in a set will vary.
- Available in different materials (wood, plastic, foam) and different sizes.

Geo-strips
- Plastic strips that can be fastened together with brass fasteners to form a variety of angles and geometric shapes.
- Strips come in 5 different lengths. Each length is a different colour.

Hundred Chart
- 10 × 10 grid filled in with numbers 1-100 or 0 - 99.
- Available as a Blackline Master in many resources or you can create your own.
- Also available as wall charts or “Pocket” charts where cards with the numbers can be inserted or removed.
<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hundred Grid</td>
<td>![Hundred Grid Image] 10 × 10 grid. Available as Blackline Master in many resources.</td>
</tr>
<tr>
<td>Hundredths Circle</td>
<td>![Hundredths Circle Image] Circle divided into tenths and hundredths. Also known as “percent circles”.</td>
</tr>
<tr>
<td>Learning Carpet®</td>
<td>![Learning Carpet® Image] 10 × 10 grid printed on a floor rug that is six feet square. Number cards and other accessories are available to use with the carpet.</td>
</tr>
<tr>
<td>Linking Cubes</td>
<td>![Linking Cubes Image] 10 × 10 grid printed on a floor rug that is six feet square. Number cards and other accessories are available to use with the carpet.</td>
</tr>
<tr>
<td>Mira®</td>
<td>![Mira® Image] Clear red plastic with a bevelled edge that projects reflected image on the other side. Other brand names include: Reflect-View and Math-Vu™.</td>
</tr>
<tr>
<td>Number Cubes</td>
<td>![Number Cubes Image] See Dice (Number Cubes)</td>
</tr>
<tr>
<td>Number Lines</td>
<td>![Number Lines Image] Number lines can begin at 0 or extend in both directions. Open number lines do not include pre-marked numbers or divisions. Students place these as needed. Double number lines have numbers written above and below the line to show equivalence.</td>
</tr>
<tr>
<td>Open Arrays</td>
<td>![Open Arrays Image] See Arrays and Open Arrays</td>
</tr>
<tr>
<td>Open Number Lines</td>
<td>![Open Number Lines Image] See Number Lines (standard, open, and double)</td>
</tr>
<tr>
<td>Pan Balance</td>
<td>![Pan Balance Image] See Balance (pan or beam)</td>
</tr>
</tbody>
</table>
Pattern Blocks
- Standard set includes: Yellow hexagons, red trapezoids, blue parallelograms, green triangles, orange squares, beige parallelograms.
- Available in a variety of materials (wood, plastic, foam).

Pentominoes
- Set includes 12 unique polygons.
- Each is composed of 5 squares which share at least one side.
- Available in 2-D and 3-D in a variety of colours.

Polydrons
- Geometric pieces snap together to build various geometric solids as well as their nets.
- Pieces are available in a variety of shapes, colours, and sizes: Equilateral triangles, isosceles triangles, right-angle triangles, squares, rectangles, pentagons, hexagons.
- Also available as Frameworks (open centres) that work with Polydrons and another brand called G-O-Frames™.

Power Polygons™
- Set includes the 6 basic pattern block shapes plus 9 related shapes.
- Shapes are identified by letter and colour.

Rekenrek
- Counting frame that has 10 beads on each bar: 5 white and 5 red.
- Available with different number of bars (1, 2, or 10).
| **Spinners** | • Create your own or use manufactured ones that are available in a wide variety:
 - number of sections;
 - colours or numbers;
 - different size sections;
 - blank.
• Simple and effective version can be made with a pencil held at the centre of the spinner with a paperclip as the part that spins. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Tangrams** | • Set of 7 shapes (commonly plastic):
 - 2 large right-angle triangles
 - 1 medium right-angle triangle
 - 2 small right-angle triangles
 - 1 parallelogram
 - 1 square
• 7-pieces form a square as well as a number of other shapes.
• Templates also available to make sets. |
| ![Tangrams](image) | ![Tangrams](image) |
| **Ten-frames** | ![Ten-frames](image) |
| **Trundle Wheel** | • Tool for measuring longer distances.
• Each revolution equals 1 metre usually noted with a click. |
| ![Trundle Wheel](image) | ![Trundle Wheel](image) |
| **Two Colour Counters** | ![Two Colour Counters](image) |
| **Venn Diagram** | • Used for classification of different attributes.
• Can be one, two, or three circles depending on the number of attributes being considered.
• Attributes that are common to each group are placed in the interlocking section.
• Attributes that don’t belong are placed outside of the circle(s), but inside the rectangle.
• Be sure to draw a rectangle around the circle(s) to show the “universe” of all items being sorted.
• Similar to a Carroll Diagram. |
| ![Venn Diagram](image) | ![Venn Diagram](image) |
List of Grade 6 Specific Curriculum Outcomes

Number (N)
- **N1** Demonstrate an understanding of place value for numbers: greater than one million; less than one thousandth.
- **N2** Solve problems involving large numbers, using technology.
- **N3** Demonstrate an understanding of factors and multiples by: determining multiples and factors of numbers less than 100 identifying prime and composite numbers; solving problems involving multiples.
- **N4** Relate improper fractions to mixed numbers.
- **N5** Demonstrate an understanding of ratio, concretely, pictorially and symbolically.
- **N6** Demonstrate an understanding of percent, (limited to whole numbers) concretely, pictorially and symbolically.
- **N7** Demonstrate an understanding of integers, concretely, pictorially and symbolically.
- **N8** Demonstrate an understanding of multiplication and division of decimals (1-digit whole number multipliers and 1-digit natural number divisors).
- **N9** Explain and apply the order of operations, excluding exponents, with and without technology (limited to whole numbers).

Patterns & Relations (PR)
- **PR1** Demonstrate an understanding of the relationship within tables of values to solve problems.
- **PR2** Represent and describe patterns and relationships using graphs and tables.

Shape and Space (SS)
- **SS1** Demonstrate an understanding of angles by: identifying examples of angles in the environment; classifying angles according to their measure; estimating the measure of angles using 45°, 90° and 180° as reference angles; determining angle measures in degrees; drawing and labeling angles when the measure is specified.
- **SS2** Demonstrate that the sum of interior angles is: 180° in a triangle; 360° in a quadrilateral.
- **SS3** Develop and apply a formula for determining the: perimeter of polygons; area of rectangles; volume of right rectangular prisms.
- **SS4** Construct and compare triangles, including: scalene; isosceles; equilateral; right; obtuse; and acute in different orientations.
- **SS5** Describe and compare the sides and angles of regular and irregular polygons.

Statistics and Probability (SP)
- **SP1** Create, label and interpret line graphs to draw conclusions.
- **SP2** Select, justify and use appropriate methods of collecting data, including: questionnaires; experiments; databases; electronic media.
- **SP3** Graph collected data and analyze the graph to solve problems.
- **SP4** Demonstrate an understanding of probability by: identifying all possible outcomes of a probability experiment; differentiating between experimental and theoretical probability; determining the theoretical probability of outcomes in a probability experiment; determining the experimental probability of outcomes in a probability experiment; comparing experimental results with the theoretical probability for an experiment.
Correlation of Grade 6 SCOs to *Math Makes Sense 6*

Number

General Outcome: Develop number sense

<table>
<thead>
<tr>
<th>Grade 6 Specific Curriculum Outcomes</th>
<th>Mathematics Makes Sense 6</th>
</tr>
</thead>
</table>
| **N1.** Demonstrate an understanding of place value for numbers:
- greater than one million
- less than one thousandth. | Unit 2, Lesson 1, pp. 46–50
Unit 3, Lesson 1, pp. 88–91 |
| **N2.** Solve problems involving large numbers, using technology. | Unit 2, Lesson 2, pp. 51–54
Unit 2, Unit Problem, pp. 84, 85 |
| **N3.** Demonstrate an understanding of factors and multiples by:
- determining multiples and factors of numbers less than 100
- identifying prime and composite numbers
- solving problems involving multiples. | Unit 2, Lesson 3, pp. 55–58
Unit 2, Lesson 4, pp. 59-62
Unit 2, Lesson 5, pp. 63-66
Unit 2, Game, p. 67
Unit 2, Lesson 6, pp. 68, 69 |
| **N4.** Relate improper fractions to mixed numbers. | Unit 5, Lesson 1, pp. 162-165
Unit 5, Lesson 2, pp. 166-169
Unit 5, Game, p. 170
Unit 5, Lesson 3, pp. 171-175
Unit 5, Lesson 6, pp. 184, 185
Unit 5, Unit Problem, pp. 196, 197 |
| **N5.** Demonstrate an understanding of ratio concretely, pictorially and symbolically. | Unit 5, Lesson 4, pp. 176–179
Unit 5, Lesson 5, pp. 180-183
Unit 5, Lesson 6, pp. 184, 185
Unit 5, Unit Problem, pp. 196, 197 |
| **N6.** Demonstrate an understanding of percent (limited to whole numbers) concretely, pictorially and symbolically. | Unit 5, Lesson 7, pp. 96–99
Unit 5, Lesson 8, pp. 190-193
Unit 5, Unit Problem, pp. 196, 197 |
| **N7.** Demonstrate an understanding of integers, concretely, pictorially and symbolically. | Unit 2, Lesson 8, pp. 74–77
Unit 2, Lesson 9, pp. 78-81
Unit 2, Unit Problem, pp. 84, 85 |
| **N8.** Demonstrate an understanding of multiplication and division of decimals (1-digit whole number multipliers and 1-digit natural number divisors). | Unit 3, Lesson 2, pp. 92-94
Unit 3, Lesson 3, pp. 95-98
Unit 3, Lesson 4, pp. 99–102
Unit 3, Lesson 5, pp. 103–107
Unit 3, Lesson 6, pp. 108–111
Unit 3, Lesson 7, pp. 112–114
Unit 3, Game, p. 115
Unit 3, Lesson 8, pp. 116, 117
Unit 3, Unit Problem, pp. 120, 121 |
| **N9.** Explain and apply the order of operations, excluding exponents, with and without technology (limited to whole numbers). | Unit 2, Lesson 7, pp. 70–73 |
Patterns and Relations (Patterns)

General Outcome: Use patterns to describe the world and solve problems.

<table>
<thead>
<tr>
<th>Grade 6 Specific Curriculum Outcomes</th>
<th>Mathematics Makes Sense 6</th>
</tr>
</thead>
</table>
| PR1. Demonstrate an understanding of the relationships within tables of values to solve problems. | Unit 1, Lesson 1, pp. 6–10
Unit 1, Lesson 2, pp. 11-15
Unit 1, Lesson 3, pp. 16, 17
Unit 1, Game, p. 18
Unit 1, Lesson 4, pp. 19-23
Unit 1, Unit Problem, pp. 42, 43 |
| PR2. Represent and describe patterns and relationships using graphs and tables. | Unit 1, Lesson 4, pp. 19-23
Unit 1, Lesson 6, pp. 29-32
Unit 1, Unit Problem, pp. 42, 43 |

Patterns and Relations (Variables and Equations)

General Outcome: Represent algebraic expressions in multiple ways.

<table>
<thead>
<tr>
<th>Grade 6 Specific Curriculum Outcomes</th>
<th>Mathematics Makes Sense 6</th>
</tr>
</thead>
</table>
| PR3. Represent generalizations arising from number relationships using equations with letter variables. | Unit 1, Lesson 4, pp. 19-23
Unit 1, Lesson 7, pp. 33-35
Unit 1, Unit Problem, pp. 42, 43
Unit 6, Lesson 7, pp. 226-230
Unit 6, Lesson 8, pp. 231-234 |
| PR4. Demonstrate and explain the meaning of preservation of equality concretely, pictorially and symbolically. | Unit 1, Lesson 8, pp. 36-39 |
Shape and Space (Measurement)

General Outcome: Use direct or indirect measurement to solve problems.

<table>
<thead>
<tr>
<th>Grade 6 Specific Curriculum Outcomes</th>
<th>Mathematics Makes Sense 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS1. Demonstrate an understanding of angles by:</td>
<td>Unit 4, Lesson 1, pp. 126-129</td>
</tr>
<tr>
<td>• identifying examples of angles in the environment</td>
<td>Unit 4, Lesson 2, pp. 130-132</td>
</tr>
<tr>
<td>• classifying angles according to their measure</td>
<td>Unit 4, Lesson 3, pp. 133-138</td>
</tr>
<tr>
<td>• estimating the measure of angles using 45°, 90° and 180° as reference angles</td>
<td>Unit 4, Lesson 4, pp. 139-142</td>
</tr>
<tr>
<td>• determining angle measure in degrees</td>
<td>Unit 4, Game, p. 143</td>
</tr>
<tr>
<td>• drawing and labeling angles when the measure is specified.</td>
<td>Unit 4, Lesson 5, pp. 144, 145</td>
</tr>
<tr>
<td></td>
<td>Unit 4, Unit Problem, pp. 156,157</td>
</tr>
<tr>
<td>SS2. Demonstrate that the sum of interior angles is:</td>
<td>Unit 4, Lesson 6, pp. 146–149</td>
</tr>
<tr>
<td>• 180° in a triangle</td>
<td>Unit 4, Lesson 7, pp. 150-153</td>
</tr>
<tr>
<td>• 360° in a quadrilateral.</td>
<td>Unit 4, Unit Problem, pp. 156, 157</td>
</tr>
<tr>
<td>SS3. Develop and apply a formula for determining the:</td>
<td>Unit 6, Lesson 7, pp. 226-230</td>
</tr>
<tr>
<td>• perimeter of polygons</td>
<td>Unit 6, Lesson 8, pp. 231–234</td>
</tr>
<tr>
<td>• area of rectangles</td>
<td>Unit 6, Lesson 9, pp. 235–238</td>
</tr>
<tr>
<td>• volume of right rectangular prisms.</td>
<td>Unit 6, Game, p. 239</td>
</tr>
<tr>
<td></td>
<td>Unit 6, Unit Problem, pp. 242, 243</td>
</tr>
</tbody>
</table>

Shape and Space (3-D Objects and 2-D Shapes)

General Outcome: Describe the characteristics of 3-D objects and 2-D shapes, and analyze the relationships among them.

<table>
<thead>
<tr>
<th>Grade 6 Specific Curriculum Outcomes</th>
<th>Mathematics Makes Sense 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS4. Construct and compare triangles, including:</td>
<td>Unit 6, Lesson 1, pp. 200-204</td>
</tr>
<tr>
<td>• scalene</td>
<td>Unit 6, Lesson 2, pp. 205-208</td>
</tr>
<tr>
<td>• isosceles</td>
<td>Unit 6, Lesson 3, pp. 209-213</td>
</tr>
<tr>
<td>• equilateral</td>
<td>Unit 6, Unit Problem, pp. 242, 243</td>
</tr>
<tr>
<td>• right</td>
<td></td>
</tr>
<tr>
<td>• obtuse</td>
<td></td>
</tr>
<tr>
<td>• acute</td>
<td></td>
</tr>
<tr>
<td>in different orientations.</td>
<td></td>
</tr>
<tr>
<td>SS5. Describe and compare the sides and angles of regular and irregular polygons.</td>
<td>Unit 6, Lesson 4, pp. 214-218</td>
</tr>
<tr>
<td></td>
<td>Unit 6, Lesson 5, pp. 219-223</td>
</tr>
<tr>
<td></td>
<td>Unit 6, Lesson 6, pp. 224, 225</td>
</tr>
<tr>
<td></td>
<td>Unit 6, Unit Problem, pp. 242, 243</td>
</tr>
</tbody>
</table>

Shape and Space (Transformations)

General Outcome: Describe and analyze position and motion of objects and shapes.

<table>
<thead>
<tr>
<th>Grade 6 Specific Curriculum Outcomes</th>
<th>Mathematics Makes Sense 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS6. Perform a combination of translation(s), rotation(s) and/or reflection(s) on a single 2-D shape, with and without technology, and draw and describe the image.</td>
<td>Unit 8, Lesson 3, pp. 303-307</td>
</tr>
<tr>
<td></td>
<td>Unit 8, Lesson 4, pp. 308-312</td>
</tr>
<tr>
<td></td>
<td>Unit 8, Lesson 6, pp. 318, 319</td>
</tr>
<tr>
<td></td>
<td>Unit 8, Game, p. 321</td>
</tr>
<tr>
<td></td>
<td>Unit 8, Unit Problem, pp. 324, 325</td>
</tr>
<tr>
<td>SS7. Perform a combination of successive transformations of 2-D shapes to create a design, and identify and describe the transformations.</td>
<td>Unit 8, Lesson 5, pp. 313-317</td>
</tr>
<tr>
<td></td>
<td>Unit 8, Technology Lesson, p. 320</td>
</tr>
<tr>
<td></td>
<td>Unit 8, Unit Problem, pp. 324, 325</td>
</tr>
<tr>
<td>SS8. Identify and plot points in the first quadrant of a Cartesian plane using whole number ordered pairs.</td>
<td>Unit 1, Lesson 5, pp. 24-28</td>
</tr>
<tr>
<td></td>
<td>Unit 1, Unit Problem, pp. 42, 43</td>
</tr>
<tr>
<td></td>
<td>Unit 8, Lesson 1, pp. 290-294</td>
</tr>
<tr>
<td>SS9. Perform and describe single transformations of a 2-D shape in the first quadrant of a Cartesian plane (limited to whole number vertices).</td>
<td>Unit 8, Lesson 2, pp. 295-300</td>
</tr>
<tr>
<td></td>
<td>Unit 8, Technology Lesson, p. 301</td>
</tr>
<tr>
<td></td>
<td>Unit 8, Game, p. 321</td>
</tr>
</tbody>
</table>
Statistics and Probability (Data Analysis)

General Outcome: Collect, display and analyze data to solve problems.

<table>
<thead>
<tr>
<th>Grade 6 Specific Curriculum Outcomes</th>
<th>Mathematics Makes Sense 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1. Create, label and interpret line graphs to draw conclusions.</td>
<td>Unit 7, Lesson 3, pp. 259–262</td>
</tr>
<tr>
<td></td>
<td>Unit 7, Lesson 4, pp. 263–266</td>
</tr>
<tr>
<td>SP2. Select, justify and use appropriate methods of collecting data,</td>
<td>Unit 7, Lesson 1, pp. 248–251</td>
</tr>
<tr>
<td>including:</td>
<td>Unit 7, Technology Lesson, p. 252</td>
</tr>
<tr>
<td>• questionnaires</td>
<td>Unit 7, Lesson 2, pp. 255–258</td>
</tr>
<tr>
<td>• experiments</td>
<td></td>
</tr>
<tr>
<td>• databases</td>
<td></td>
</tr>
<tr>
<td>• electronic media.</td>
<td></td>
</tr>
<tr>
<td>SP3. Graph collected data and analyze the graph to solve problems.</td>
<td>Unit 7, Lesson 4, pp. 263–266</td>
</tr>
<tr>
<td></td>
<td>Unit 7, Lesson 5, pp. 267–270</td>
</tr>
<tr>
<td></td>
<td>Unit 7, Unit Problem, pp. 286, 287</td>
</tr>
</tbody>
</table>

Statistics and Probability (Chance and Uncertainty)

General Outcome: Use experimental and theoretical probabilities to represent and solve problems involving uncertainty.

<table>
<thead>
<tr>
<th>Grade 6 Specific Curriculum Outcomes</th>
<th>Mathematics Makes Sense 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP4. Demonstrate an understanding of probability by:</td>
<td>Unit 7, Lesson 6, pp. 271–275</td>
</tr>
<tr>
<td>• identifying all possible outcomes of a probability experiment</td>
<td>Unit 7, Lesson 7, pp. 276–279</td>
</tr>
<tr>
<td>• differentiating between experimental and theoretical probability</td>
<td>Unit 7, Technology Lesson, p. 280</td>
</tr>
<tr>
<td>• determining the theoretical probability of outcomes in a</td>
<td>Unit 7, Game, p. 281</td>
</tr>
<tr>
<td>probability experiment</td>
<td>Unit 7, Lesson 8, pp. 282, 283</td>
</tr>
<tr>
<td>• determining the experimental probability of outcomes in a</td>
<td>Unit 7, Unit Problem, pp. 286, 287</td>
</tr>
<tr>
<td>probability experiment</td>
<td></td>
</tr>
<tr>
<td>• comparing experimental results with the theoretical probability</td>
<td></td>
</tr>
<tr>
<td>for an experiment.</td>
<td></td>
</tr>
</tbody>
</table>
Grade 6 Specific Curriculum Outcomes: Table of Specifications (DRAFT)

<table>
<thead>
<tr>
<th>Content Strands</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Strand – 36%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>N4, N5, N7, N8, N9</td>
<td>N2, N3, N4, N6, N8</td>
<td>N1, N3, N5, N9</td>
</tr>
<tr>
<td>Patterns and Relations Strand- 15%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patterns</td>
<td>PR1, PR2</td>
<td>PR1</td>
<td></td>
</tr>
<tr>
<td>Variables and Equations</td>
<td>PR3, PR4</td>
<td>PR3</td>
<td></td>
</tr>
<tr>
<td>Shape and Space Strand – 36%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement</td>
<td>SS1, SS2, SS3</td>
<td>SS1, SS2, SS3</td>
<td>SS3</td>
</tr>
<tr>
<td>3-D Objects and 2-D Shapes</td>
<td>SS4, SS5</td>
<td>SS5</td>
<td></td>
</tr>
<tr>
<td>Transformations</td>
<td>SS8</td>
<td>SS6, SS7, SS9</td>
<td></td>
</tr>
<tr>
<td>Statistics and Probability Strand – 13%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Analysis</td>
<td>SP1, SP2, SP3</td>
<td>SP1</td>
<td></td>
</tr>
<tr>
<td>Chance and Uncertainty</td>
<td>SP4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

Computation, Calculators, and Common Sense. May 2005, NCTM.

